EDT5005 Distance Education: Theory, Research and PracticeBahçeşehir UniversityDegree Programs ENERGY SYSTEMS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementBologna CommissionNational Qualifications
ENERGY SYSTEMS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
EDT5005 Distance Education: Theory, Research and Practice Fall 3 0 3 8
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. ALİ ŞİMŞEK
Course Lecturer(s): Assist. Prof. ÖZGÜR ERKUT ŞAHİN
Prof. Dr. TUFAN ADIGÜZEL
Recommended Optional Program Components: None
Course Objectives: The goal of this course is to help students develop a comprehensive understanding about the conceptual framework, status of research, and important practices of distance education around the world by studying them closely.

Learning Outcomes

The students who have succeeded in this course;
By the end of this course, students will be able to:
01. Define major concepts related to open and distance learning
02. Evaluate advantages and disadvantages of distance education
03. Summarize the history of distance education in the world and in Turkey
04. Elaborate on the major theories about open and distance learning
05. Describe fundamental elements of distance education systems
06. Explain the uses of various technologies in open and distance learning
07. Elaborate on the design principles of open and distance learning
08. Describe management and organization models of distance education
09. Compare distance education practices in various countries
10. Explain learner characteristics and educator roles in distance education
11. Evaluate the status of research on open and distance learning
12. Discuss new developments and trends regarding distance education

Course Content

Introduction and basic concepts
Advantages and disadvantages of distance education
History of distance education
Theories of distance education
Modes of distance education systems
Technologies used in open and distance learning
Midterm
Module design in open and distance learning
Management and organization models of distance education
Distance education practices in different countries
Learner characteristics and educator roles
Learning management systems
Open educational resources and MOOCs
Research and development in distance education
Global issues and trends in open and distance learning

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Orientation
2) Philosophies and Theories of Distance Education • Face-to-face vs. Distance vs. Hybrid Instruction: A Comparison • A Framework for E-learning • Collaborative & Transformative Learning Illustrate best practices in Turkey and the world
3) Technologies in Distance Education I • Web 2.0 & 3.0 • Net & Web-based Learning • Learning Management Systems Blogs & Wikis & LMSs
4) Technologies in Distance Education II • Learning Tools and Objects Moodle: Connect, Communicate & Collaborate
5) Issues for Distance Education Community • Learning Communities • Characteristics • Social Networking Moodle: Course Design
6) Design and Development of Interactive Distance Learning Media I • Standards • Principles • Accessibility • Universal Design Moodle: Course Development
7) Moodle: Course Facilitation & Assessment
8) Design and Development of Interactive Distance Learning Media II • Ethics • Copyright • Cultural Challenges Confirm Access to Second Life Join Second Life
9) Web-based Course Design and Development I • A Step-by-step Approach Login and Begin on Welcome Island Design Your Avatar
10) Web-based Course Design and Development II • A Step-by-step Approach Learn how to Operate Second Life Explore Educator Locations in Second Life
11) Management of Distance Education Technologies I • Administration & Policy • Quality Distance Education • PDA Model Group study on your final project
12) Management of Distance Education Technologies II • Evaluation • Educational Effectiveness • Action Matrix Group study on your final project
13) e-Research I • The Scope of e-Research • The Use of Distance Education Media in Educational Research and Practice Group study on your final project
14) e-Research II • Data Collection over the Internet and Ubiquitous Environments. Group study on your final project

Sources

Course Notes / Textbooks: Burns, M. (2023). Distance education for teacher training: Modes, models, and methods (2nd ed.). Washington, DC: Education Development Center
Gunawardena, C. V. & McIsaac, M. S. (2003). Distance education. In D. H. Jonassen (Ed.), Handbook of research on educational communications and technology (2nd ed. pp.113-142). Mahwah, NJ: Lawrence Erlbaum.
Latchem, C. & Jung, J. (2010). Distance and blended learning in Asia. London: Routledge.
Moore, M. & Kearsley, G. (2011). Distance education: A systems view of online learning (3rd ed.). Belmond, CA: Wadsworth.
Moore, M. G. & Diehl, W.C. (Eds.). (2019). Handbook of distance education (4th ed.). Abingdon: Routledge.
Simonson, M., Smaldino, S., & Zvacek, S. (2015). Teaching and learning at a distance: Foundations of distance education (6th ed.). Charlotte, NC: Information Age.
References: Burns, M. (2023). Distance education for teacher training: Modes, models, and methods (2nd ed.). Washington, DC: Education Development Center
Gunawardena, C. V. & McIsaac, M. S. (2003). Distance education. In D. H. Jonassen (Ed.), Handbook of research on educational communications and technology (2nd ed. pp.113-142). Mahwah, NJ: Lawrence Erlbaum.
Latchem, C. & Jung, J. (2010). Distance and blended learning in Asia. London: Routledge.
Moore, M. & Kearsley, G. (2011). Distance education: A systems view of online learning (3rd ed.). Belmond, CA: Wadsworth.
Moore, M. G. & Diehl, W.C. (Eds.). (2019). Handbook of distance education (4th ed.). Abingdon: Routledge.
Simonson, M., Smaldino, S., & Zvacek, S. (2015). Teaching and learning at a distance: Foundations of distance education (6th ed.). Charlotte, NC: Information Age.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 42 % 10
Homework Assignments 2 % 25
Midterms 1 % 25
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Project 1 60 60
Homework Assignments 2 50 100
Midterms 1 3 3
Final 1 3 3
Total Workload 208

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Build up a body of knowledge in mathematics, science and Energy Systems Engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems.
2) Ability to identify, formulate, and solve complex Energy Systems Engineering problems; select and apply proper modeling and analysis methods for this purpose.
3) Ability to design complex Energy systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Ability to devise, select, and use modern techniques and tools needed for solving complex problems in Energy Systems Engineering practice; employ information technologies effectively.
5) Ability to design and conduct numerical or pysical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Energy Systems Engineering.
6) Ability to cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Energy Systems-related problems
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. Write and understand reports, prepare design and production reports, deliver effective presentations, give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself. 3
9) Develop an awareness of professional and ethical responsibility, and behave accordingly. Be informed about the standards used in Energy Systems Engineering applications.
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Energys Systems Engineering on health, environment, security in universal and social scope, and the contemporary problems of Energys Systems engineering; is aware of the legal consequences of Energys Systems engineering solutions.