SEN3006 Software ArchitectureBahçeşehir UniversityDegree Programs ENERGY SYSTEMS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
ENERGY SYSTEMS ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
SEN3006 Software Architecture Fall 2 2 3 7
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi YÜCEL BATU SALMAN
Course Lecturer(s): Prof. Dr. NAFİZ ARICA
RA MERVE ARITÜRK
RA SEVGİ CANPOLAT
Dr. Öğr. Üyesi YÜCEL BATU SALMAN
Instructor DUYGU ÇAKIR YENİDOĞAN
Dr. Öğr. Üyesi TAMER UÇAR
Recommended Optional Program Components: None.
Course Objectives: Provides in depth the concepts, principals, methods, and best practices in software architectures; emphasizes on team projects to architect domain-specific architectures, service-oriented architectures, product-line architectures, adaptive and generative architectures. This course provides an overview for software engineering concepts and architectures. Students will work in small groups to design and implement software applications. The course will also provide a high-level overview of the software engineering discipline: software requirements, software design, software construction, software management, and software quality and testing.

Learning Outcomes

The students who have succeeded in this course;
1. Define the phases of the software development lifecycle
2. Describe the difference between project and process metrics
3. Define the terms version control and change control
4. Apply the methods for performing requirements elicitation and requirements analysis
5. Discuss important design principles such as information hiding and abstraction
6. Discuss the differences between structured and object oriented analysis and design
7. Define key testing terms such as black box testing and white box testing
8. Construct the activities of the software lifecycle for a small to medium software project

Course Content

The course content is composed of product, process, project management, metrics, project planning, systems engineering, analysis concepts, analysis modeling, risk, sqa, project scheduling, scm, design concepts, architecture design, user interface design, technical metrics, oo concepts, ooa, ood, software testing techniques and strategies, software maintenance, software testing techniques and strategies , oo metrics and a case study in software architecture – the a-7e operational flight program.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Product, Process
2) Project Management, Metrics, Project Planning
3) Systems Engineering
4) Analysis Concepts, Analysis Modeling
5) Risk, SQA, Project Scheduling, SCM
6) Design Concepts
7) Architecture Design, User Interface Design, Other Design Topics
8) Design Topics
9) Technical Metrics, OO Concepts, OOA, OOD
10) Software Testing Techniques and Strategies
11) Software maintenance, Software Testing Techniques and Strategies , OO Metrics
12) OO Metrics
13) A Case Study in Software Architecture – the A-7E Operational Flight Program
14) Project Presentations

Sources

Course Notes / Textbooks: Craig Larman
Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development, 3/E
ISBN-10: 0131489062 | ISBN-13: 9780131489066

Roger S. Pressman
Software Engineering: A Practitioner's Approach, Sixth
Edition , McGraw-Hill

Software Architecture in Practice, 2/e
Bass, Clements & Kazman
2003 | Addison-Wesley Professional | Cloth; 560 pp
ISBN-10: 0321154959 | ISBN-13: 9780321154958
References: Yok - None.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 2 % 10
Project 1 % 15
Midterms 1 % 25
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 35
PERCENTAGE OF FINAL WORK % 65
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Laboratory 14 2 28
Study Hours Out of Class 2 20 40
Project 1 15 15
Quizzes 2 10 20
Midterms 1 16 16
Final 1 20 20
Total Workload 167

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Build up a body of knowledge in mathematics, science and Energy Systems Engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems.
2) Ability to identify, formulate, and solve complex Energy Systems Engineering problems; select and apply proper modeling and analysis methods for this purpose.
3) Ability to design complex Energy systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Ability to devise, select, and use modern techniques and tools needed for solving complex problems in Energy Systems Engineering practice; employ information technologies effectively.
5) Ability to design and conduct numerical or pysical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Energy Systems Engineering.
6) Ability to cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Energy Systems-related problems
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. Write and understand reports, prepare design and production reports, deliver effective presentations, give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself.
9) Develop an awareness of professional and ethical responsibility, and behave accordingly. Be informed about the standards used in Energy Systems Engineering applications.
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Energys Systems Engineering on health, environment, security in universal and social scope, and the contemporary problems of Energys Systems engineering; is aware of the legal consequences of Energys Systems engineering solutions.