SEN2211 Data Structures and Algorithms IBahçeşehir UniversityDegree Programs ENERGY SYSTEMS ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
SEN2211 Data Structures and Algorithms I Spring 2 2 3 7
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi BETÜL ERDOĞDU ŞAKAR
Course Lecturer(s): Dr. Öğr. Üyesi BETÜL ERDOĞDU ŞAKAR
Recommended Optional Program Components: None
Course Objectives: This is an introductory course on common data structures that are used in software engineering. After completing the course, the student will have knowledge of applying, implementing and analysis of basic data structures, including, lists, stacks and queues. Certain fundamental techniques, such as sorting, searching and recursion are also taught.

Learning Outcomes

The students who have succeeded in this course;
1) Describe and apply basic object oriented programming principles.
2) Implement basic data structures such as linked lists, stacks and queues.
3) Analyze the complexity and efficiency of algorithms.
4) Choose and design data structures for writing efficient programs.
5) Implement recursive algorithms.
6) Describe and implement sorting algorithms on common data structures.
7) Describe and implement search algorithms on common data structures.

Course Content

The course content is composed of object oriented Java review, the complexity and efficiency of algorithms, introduction to list-stack-queue structures, implementing list-stack-queue structures, recursion, searching algorithms and sorting algorithms.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Data Structures and Algorithms Complexity Analysis
2) Introduction to Linked Lists
3) Doubly Linked Lists Ordered Linked Lists
5) Stacks
6) Stacks for Algebraic Operations
7) Queues
8) Queues
9) Data Structure Classes in Java
10) Recursion
11) Recursive Complexity
12) Searching Algorithms
13) Sorting Algorithms
14) Sorting algorithms


Course Notes / Textbooks: Data Structures & Problem Solving Using Java (Mark Allen Weiss)
Data Structures and Algorithm Analysis in Java (Mark Allen Weiss)
Data Structures and Abstractions with Java (Frank Carrano)
References: Yok

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Laboratory 4 % 20
Quizzes 5 % 20
Midterms 1 % 20
Final 1 % 40
Total % 100
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 28
Laboratory 14 28
Study Hours Out of Class 12 24
Midterms 10 52
Final 5 32
Total Workload 164

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
Program Outcomes Level of Contribution
1) Build up a body of knowledge in mathematics, science and Energy Systems Engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems.
2) Ability to identify, formulate, and solve complex Energy Systems Engineering problems; select and apply proper modeling and analysis methods for this purpose.
3) Ability to design complex Energy systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose.
4) Ability to devise, select, and use modern techniques and tools needed for solving complex problems in Energy Systems Engineering practice; employ information technologies effectively.
5) Ability to design and conduct numerical or pysical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Energy Systems Engineering.
6) Ability to cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Energy Systems-related problems
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. Write and understand reports, prepare design and production reports, deliver effective presentations, give and receive clear and understandable instructions.
8) Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself.
9) Develop an awareness of professional and ethical responsibility, and behave accordingly. Be informed about the standards used in Energy Systems Engineering applications.
10) Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development.
11) Acquire knowledge about the effects of practices of Energys Systems Engineering on health, environment, security in universal and social scope, and the contemporary problems of Energys Systems engineering; is aware of the legal consequences of Energys Systems engineering solutions.