DIGITAL GAME DESIGN | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
CMP4502 | Distributed Databases | Spring | 3 | 0 | 3 | 6 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Assist. Prof. TARKAN AYDIN |
Recommended Optional Program Components: | None |
Course Objectives: | Communication paradigms: client/server protocols, remote procedure call (e.g., Java RMI), multicast protocols handling asynchronous communication and failures. Distributed transaction management requires enhanced concurrency control methods. Comparing algorithms proposed by researchers and commercial solutions. Replicating data to increase fault-tolerance and the performance of databases. |
The students who have succeeded in this course; 1. Be able to understand Distributed computing systems, their characteristics, and desired functionality 2. Become familiar with Distributed computer system models and architectures 3. Be able to understand Synchronization 4. Be able to understand Replication 5. Be able to use distributed naming 6. Be able to understand Fault-tolerance |
1.Introduction 2.DDBMS Architecture 3.Distributed Database Design 4.Semantic Integrity Control 5.Query decomposition and data localization 6.Optimization of Distributed Queries 7.Transactions 8.Concurrency Control 9.Reliability |
Week | Subject | Related Preparation |
1) | Introduction: syllabus, administration and organization of the course, general introduction in distributed DBMS | None |
2) | DDBMS Architecture: definition of DDBMS architecture, ANSI/SPARC standard, global, local, external, and internal schemas, DDBMS architectures, components of DDBMS | None |
3) | Distributed Database Design: conceptual design (what can be distributed, design patterns), top-down, bottom-up patterns, technical design (fragmentation, allocation and replication of fragments, optimality, heuristics) | None |
4) | Semantic Integrity Control: view management, security control, integrity control | None |
5) | Semantic Integrity Control: view management, security control, integrity control | None |
6) | Midterm Exam 1 | Review all the topics |
7) | Query decomposition and data localization: normalization, analysis, elimination of redundancy, rewriting, reduction for HF, reduction for VF | None |
8) | Optimization of Distributed Queries: basic concepts, distributed cost model, database statistics | None |
9) | Optimization of Distributed Queries: ordering of joins and semijoins, query optimization algorithms, INGRES, System R, hill climbing | None |
10) | Transactions: introduction to transactions, definition and examples, properties, classification, processing issues, execution | None |
11) | Midterm Exam 2 | Review all the topics |
12) | Concurrency Control: definition, execution schedules, examples, locking based algorithms, timestamp ordering algorithm, deadlock management | None |
13) | Reliability: definitions, basic concepts, local recovery management, distributed reliability protocols | None |
14) | Reliability: distributed reliability protocols, 2PC protocol | None |
Course Notes / Textbooks: | Principles of Distributed Database Systems by M. Tamer Özsu and Patrick Valduriez |
References: | None |
Semester Requirements | Number of Activities | Level of Contribution |
Project | 1 | % 10 |
Midterms | 2 | % 40 |
Final | 1 | % 50 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 40 | |
PERCENTAGE OF FINAL WORK | % 60 | |
Total | % 100 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Comprehend the conceptual importance of the game in the field of communication, ability to implement the player centered application to provide design. | |
2) | Analyze, synthesize, and evaluate information and ideas from various perspectives. | |
3) | Analyze the key elements that make up specific game genres, forms of interactions, mode of narratives and understand how they are employed effectively to create a successful game. | |
4) | Understand game design theories and methods as well as implement them during game development; to make enjoyable, attractive, instructional and immersive according to the target audience. | |
5) | Understand the technology and computational principles involved in developing games and master the use of game engines. | |
6) | Understand the process of creation and use of 2D and 3D assets and animation for video games. | |
7) | Understand and master the theories and methodologies of understanding and measuring player experience and utilize them during game development process. | |
8) | Comprehend and master how ideas, concepts and topics are conveyed via games followed by the utilization of these aspects during the development process. | |
9) | Manage the game design and development process employing complete documentation; following the full game production pipeline via documentation. | |
10) | Understand and employ the structure and work modes of game development teams; comprehend the responsibilities of team members and collaborations between them while utilizing this knowledge in practice. | |
11) | Understand the process of game publishing within industry standards besides development and utilize this knowledge practice. | |
12) | Pitching a video game to developers, publishers, and players; mastering the art of effectively communicating and marketing the features and commercial potential of new ideas, concepts or games. |