DİJİTAL OYUN TASARIMI | |||||
Lisans | TYYÇ: 6. Düzey | QF-EHEA: 1. Düzey | EQF-LLL: 6. Düzey |
Ders Kodu | Ders Adı | Yarıyıl | Teorik | Pratik | Kredi | AKTS |
CMP4501 | Yapay Zeka ve Uzman Sistemlere Giriş | Bahar | 3 | 0 | 3 | 6 |
Bu katalog bilgi amaçlıdır, dersin açılma durumu, ilgili bölüm tarafından yarıyıl başında belirlenir. |
Öğretim Dili: | English |
Dersin Türü: | Non-Departmental Elective |
Dersin Seviyesi: | LİSANS |
Dersin Veriliş Şekli: | Yüz yüze |
Dersin Koordinatörü: | Öğ.Gör. BARIŞ ÖZCAN |
Opsiyonel Program Bileşenleri: | Yok |
Dersin Amacı: | Bu ders yapay zekanın temel konularına giriş niteliğindedir. Problem çözümü için temel arama teknikleri, bilgi temsili ve mantıksal sistemlerin temelleri, temel öğrenme algoritmaları ve uzman sistemlerin temelleri tanıtılacaktır. |
Bu dersi başarıyla tamamlayabilen öğrenciler; I- Bir problemin durum uzayı tanımını yapabilmek. II - Bir problem için kaba-kuvvet veya sezgisel algoritmaları seçebilmek ve kullanabilmek. III- Alpha-beta budaması ile minimax arama algoritmasını gerçekleştirebilmek. IV. En temel bilgi temsil sistemlerini karşılaştırıp değerlendirebilmek. V. Kuram isplatlamak için resolution tekniğinin çalışmasını açıklayabilmek. VI. Gözetimli ve gözetimsiz öğrenme teknikleri arasında farkı açıklayabilmek. VIII. Overfitting, underfitting, bias, ve variance gibi kavramları açıklayabilmek. IX. Uzman sistemlerin temellerini tanımlayabilmek ve uzman sistemleri değerlendirebilmek. |
Yapay zekaya giriş, durum uzayları ve arama, sezgisel fonksiyonlar ve arama, alpha-beta budama, önermeler ve birinci dereceden yüklemler mantığı, önermeli ve birinci dereceden çıkarsama, birleştirme ve çözülme, doğrusal regresyon, lojistik regresyon, sinirsel ağlar ve geri yayılım algoritması, Bayes kuralı ve naif Bayes algoritması, kümeleme ve k-means algoritması, uzman sistemlerin temelleri, uzman sistem yazılımları. Dersin Öğretim yöntemleri anlatım, bireysel çalışma, problem çözme ve uygulama şeklindedir |
Hafta | Konu | Ön Hazırlık |
1) | Yapay zekaya giriş | |
2) | Durum uzayları ve arama | |
3) | Koşul Tatmin Problemleri | |
4) | Başka etmenler ile arama. | |
5) | Markov karar süreçleri I | |
6) | Markov karar süreçleri II | |
7) | Ara sınav | |
8) | Pekiştirmeli Öğrenme | |
9) | Olasılık, Bayes Kuralı ve Bayes ağları | |
11) | Bayes kuralı ve naif Bayes algoritması | |
12) | Sinirsel ağlar ve geri yayılım algoritması I | |
13) | Sinirsel ağlar ve geri yayılım algoritması II | |
14) | Büyük Dil Modelleri I | |
15) | Büyük Dil Modelleri II |
Ders Notları / Kitaplar: | Russell, S., Norvig, P., Artificial Intelligence: A Modern Approach, (3rd edition), 2009. Giarratano, J.C., Riley, G.D., Expert Systems: Principles and Programming, (4th edition), 2004. |
Diğer Kaynaklar: | Yok - None |
Yarıyıl İçi Çalışmaları | Aktivite Sayısı | Katkı Payı |
Küçük Sınavlar | 5 | % 20 |
Projeler | 1 | % 25 |
Ara Sınavlar | 1 | % 20 |
Final | 1 | % 35 |
Toplam | % 100 | |
YARIYIL İÇİ ÇALIŞMALARININ BAŞARI NOTU KATKISI | % 40 | |
YARIYIL SONU ÇALIŞMALARININ BAŞARI NOTUNA KATKISI | % 60 | |
Toplam | % 100 |
Aktiviteler | Aktivite Sayısı | İş Yükü |
Ders Saati | 14 | 42 |
Proje | 7 | 35 |
Ödevler | 10 | 20 |
Küçük Sınavlar | 6 | 16 |
Ara Sınavlar | 5 | 15 |
Final | 5 | 20 |
Toplam İş Yükü | 148 |
Etkisi Yok | 1 En Düşük | 2 Düşük | 3 Orta | 4 Yüksek | 5 En Yüksek |
Dersin Program Kazanımlarına Etkisi | Katkı Payı | |
1) | İletişim alanında oyunun kavramsal olarak önemini anlayıp, oyuncuyu merkeze alan tasarım odaklı uygulama yapabilme yeteneği kazandırmak. | |
2) | Çeşitli perspektiflerden bilgi ve fikirleri analiz ederek, sentezlemek ve değerlendirebilmek. | |
3) | Oyun türlerini, etkileşim ve anlatım biçimlerini oluşturan temel öğeleri analiz edebilme ve başarılı bir oyun oluşturmak için nasıl kullanıldığını anlamak. | |
4) | Oyun tasarımı teorilerini ve metodolojilerini anlamak ve oyun geliştirirken kullanmak; hedef kitleye göre eğlenceli, çekici, içine alan ve öğretici oyunlar yapmak. | |
5) | Oyun geliştirmede kullanılan teknolojileri ve bilişim temellerini anlamak; oyun motorlarının kullanımına hakim olmak. | |
6) | Oyunlarda 2B ve 3B karakterler ile animasyonlarının yaratılması sürecine hakim olmak. | |
7) | Oyuncu deneyimini anlama, ölçme teorileri ile metodolojilerini kavramak ve oyun üretimi sürecinde bu bilgilerden faydalanmak. | |
8) | Oyunların tasarım yoluyla nasıl bir fikri, bir mesajı ve bir duyguyu ilettiğini kavramak oyun üretimi sürecinde bu bilgilerden faydalanmak. | |
9) | Oyun tasarımı ve geliştirme sürecini, gerekli dokümantasyonu yaparak yönetebilmek; bu dokümantasyon ile oyun üretim bandını takip edebilmek. | |
10) | Oyun geliştirme takımlarının yapısını ve çalışma biçimlerini; takım üyelerinin sorumluluklarını ve işbirliği yöntemlerini kavramak ve pratikte uygulayabilmek. | |
11) | Geliştirme dışında bir oyunun yayın sürecini endüstri standartlarında kavrayabilmek ve pratiğe dökebilmek. | |
12) | Bir video oyununu oyunculara, yatırımcılara ve yayıncılara tanıtabilmek; ortaya çıkan oyun fikrinin veya oyunun özelliklerini ve potansiyel ticari kazanımlarını etkin bir şekilde iletebilmek adına pazarlama konusuna hakim olmak. |