BME4010 Healthcare Facility Guidelines and StandardsBahçeşehir UniversityDegree Programs DIGITAL GAME DESIGNGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
DIGITAL GAME DESIGN
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME4010 Healthcare Facility Guidelines and Standards Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. ALİ YEKTA ÜLGEN
Course Objectives: To learn the design and certification requirements for Hospitals, Health Care Facility Management and Safety.

Learning Outcomes

The students who have succeeded in this course;
Guidelines and Minimum Requirements for Design and Construction of Hospital and Health Care Facilities

Course Content

Guidelines and Minimum Requirements for Design and Construction of Hospital and Health Care Facilities; Sterilization, Medical Gas Pipeline System, Earth Grounding, Clean air systems, Hazardous materials and Risk Control, Patient Safety.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Guidelines for Design of Health Care Facilities (AIA)
2) Hospital Accreditation and JCI Standards; QHA Trent Accreditation Standards
3) Design Requirements for ICU, OR, X-Ray Department, PET Shielding Requirements
4) "Medical Gas Pipeline System, Guidelines for Testing Medical Gases (O2, N20 and Medical Air), Medical-surgical vacuum systems, Design of the Vacuum Pump System, Waste Anesthetic Gas Disposal"
5) Clean-air Systems and Classification, Hospital clean-air zones, Airborne Infection, ISO 14644
6) Particle Counting, Active/Passive Air Sampling, Isolation Rooms Design Requirements
7) Midterm Exam I
8) Earth Grounding System, Isolated Power Systems and Line Isolation Monitor, Conductive Flooring
9) "Guidelines for Design of Sterilization Department, Sterilization Validation, Sterility and Shelf Life, Bowie-Dick test, Chemical indicators, Biological indicators"
10) Sterilization Techniques (EtO, Formaldehyde, Ozone, Plasma , Gamma) Compaing EtO and Plasma sterilization techniques
11) Sterilization Department Design Guidelines, Validation in Sterilization
12) Health Devices IPM System for Medical Device Performance and Safety Measurements
13) Waste Management, Management of Hazardous Materials
14) Midterm Exam II

Sources

Course Notes / Textbooks: Ders Notları; Power Point sunumlar.
References: Joint Commission International Accreditation Standards for Hospitals, 6th Edition, Sterilization, Part 1: Sterilization in Health Care Facilities, AAMI (Association for the Advancement of Medical Instrumentation ), 2015 Edition; EN ISO 14644 Standards; EN ISO 7396; Guidelines for the Design and Construction of Health Care Facilities, American Institute of Architects and the Facility Guidelines Institute, 2014; NFPA 99 Standard For Healthcare Facilities, 2015 edition; ECRI Health Devices IPM.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 3 % 20
Midterms 2 % 40
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 12 3 36
Study Hours Out of Class 14 5 70
Homework Assignments 4 7 28
Midterms 2 3 6
Final 1 2 2
Total Workload 142

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Comprehend the conceptual importance of the game in the field of communication, ability to implement the player centered application to provide design.
2) Analyze, synthesize, and evaluate information and ideas from various perspectives.
3) Analyze the key elements that make up specific game genres, forms of interactions, mode of narratives and understand how they are employed effectively to create a successful game.
4) Understand game design theories and methods as well as implement them during game development; to make enjoyable, attractive, instructional and immersive according to the target audience.
5) Understand the technology and computational principles involved in developing games and master the use of game engines.
6) Understand the process of creation and use of 2D and 3D assets and animation for video games.
7) Understand and master the theories and methodologies of understanding and measuring player experience and utilize them during game development process.
8) Comprehend and master how ideas, concepts and topics are conveyed via games followed by the utilization of these aspects during the development process.
9) Manage the game design and development process employing complete documentation; following the full game production pipeline via documentation.
10) Understand and employ the structure and work modes of game development teams; comprehend the responsibilities of team members and collaborations between them while utilizing this knowledge in practice.
11) Understand the process of game publishing within industry standards besides development and utilize this knowledge practice.
12) Pitching a video game to developers, publishers, and players; mastering the art of effectively communicating and marketing the features and commercial potential of new ideas, concepts or games.