ENERGY SYSTEMS ENGINEERING | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
ISM5212 | Quality Management | Spring | 3 | 0 | 3 | 12 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | Turkish |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Assoc. Prof. AHMET BEŞKESE |
Course Lecturer(s): |
Assoc. Prof. AHMET BEŞKESE |
Recommended Optional Program Components: | N.A. |
Course Objectives: | The aim of the course is to provide the fundamentals of quality management including statistical quality control. The course covers causes of variation, statistical process control, control charts, quality control tools and techniques. The managerial and organizational aspects of quality, total quality management (TQM), quality awards, quality assurance systems, the IS0 certification process, six-sigma and the DMAIC process are also covered. Applications with statistical software packages are also utilized. |
The students who have succeeded in this course; I. Discuss quality, quality improvement and different dimensions of quality. II. Describe the quality management philosophies of Deming, Juran, Feigenbaum and Crosby. III. Discuss TQM, six-sigma, ISO standards and quality awards. IV. Explain the steps of DMAIC. V. Recognize the chance and assignable causes of variability in a process. VI. Use the basic process improvement tools of statistical process control. VII. Evaluate confidence intervals for one sample and for comparing two samples. VIII. Construct different types of control charts for variables. IX. Analyze process capability using control charts. X. Construct different types of control charts for attributes. |
The course covers acceptance sampling, types of sampling plans, causes of variation, statistical process control, control charts, quality control tools and techniques. The managerial and organizational aspects of quality, total quality management (TQM), quality awards, quality assurance systems, the IS0 certification process, six-sigma and the DMAIC process are also covered. |
Week | Subject | Related Preparation |
1) | Introduction to Quality: basic definitions and historical development of quality and quality improvement | |
2) | Relation between quality and productivity, quality costs, quality management philosophies | |
3) | Management Aspects of Quality: TQM, ISO, Six-sigma | |
4) | Management Aspects of Quality: DFSS, Lean, DMAIC process | |
5) | Tools and Techniques for Quality Control and Improvement | |
6) | Statistical Inference about Product and Process Quality | |
7) | Statistical Inference about Product and Process Quality | |
8) | Midterm | |
9) | Control Charts for Variables: Xbar-R, Xbar-S, I-MR control charts | |
10) | Control Charts for Variables: CUSUM, EWMA control charts | |
11) | Process Capability Analysis using Control Charts | |
12) | Control Charts for Attributes: p, np control charts | |
13) | Control Charts for Attributes: c, u control charts | |
14) | Project presentations |
Course Notes / Textbooks: | Douglas C. Montgomery, Cheryl L. Jennings, Michele E. Pfund, 2011. Managing, Controlling, and Improving Quality, John Wiley & Sons, 1st Edition |
References: | Douglas C. Montgomery, 2009. Statistical Quality Control: A Modern Introduction, John Wiley & Sons, 6th Edition |
Semester Requirements | Number of Activities | Level of Contribution |
Homework Assignments | 4 | % 10 |
Project | 1 | % 20 |
Midterms | 1 | % 30 |
Final | 1 | % 40 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 40 | |
PERCENTAGE OF FINAL WORK | % 60 | |
Total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 3 | 42 |
Study Hours Out of Class | 14 | 2 | 28 |
Presentations / Seminar | 1 | 10 | 10 |
Project | 1 | 40 | 40 |
Homework Assignments | 4 | 10 | 40 |
Midterms | 1 | 15 | 15 |
Final | 1 | 20 | 20 |
Total Workload | 195 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Build up a body of knowledge in mathematics, science and Energy Systems Engineering subjects; use theoretical and applied information in these areas to model and solve complex engineering problems. | |
2) | Ability to identify, formulate, and solve complex Energy Systems Engineering problems; select and apply proper modeling and analysis methods for this purpose. | |
3) | Ability to design complex Energy systems, processes, devices or products under realistic constraints and conditions, in such a way as to meet the desired result; apply modern design methods for this purpose. | |
4) | Ability to devise, select, and use modern techniques and tools needed for solving complex problems in Energy Systems Engineering practice; employ information technologies effectively. | |
5) | Ability to design and conduct numerical or pysical experiments, collect data, analyze and interpret results for investigating the complex problems specific to Energy Systems Engineering. | |
6) | Ability to cooperate efficiently in intra-disciplinary and multi-disciplinary teams; and show self-reliance when working on Energy Systems-related problems | |
7) | Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. Write and understand reports, prepare design and production reports, deliver effective presentations, give and receive clear and understandable instructions. | |
8) | Recognize the need for life-long learning; show ability to access information, to follow developments in science and technology, and to continuously educate oneself. | |
9) | Develop an awareness of professional and ethical responsibility, and behave accordingly. Be informed about the standards used in Energy Systems Engineering applications. | |
10) | Learn about business life practices such as project management, risk management, and change management; develop an awareness of entrepreneurship, innovation, and sustainable development. | |
11) | Acquire knowledge about the effects of practices of Energys Systems Engineering on health, environment, security in universal and social scope, and the contemporary problems of Energys Systems engineering; is aware of the legal consequences of Energys Systems engineering solutions. |