ESE1001 Introduction to Energy Systems EngineeringBahçeşehir UniversityDegree Programs CIVIL ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
CIVIL ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Ders Genel Tanıtım Bilgileri

Course Code: ESE1001
Ders İsmi: Introduction to Energy Systems Engineering
Ders Yarıyılı: Fall
Spring
Ders Kredileri:
Theoretical Practical Credit ECTS
2 0 2 5
Language of instruction: English
Ders Koşulu:
Ders İş Deneyimini Gerektiriyor mu?: No
Type of course: Non-Departmental Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi NEZİHE YILDIRAN
Course Lecturer(s):
Course Assistants:

Dersin Amaç ve İçeriği

Course Objectives: This course aims at introducing freshmen energy systems engineering students their future duties and responsibilities as well as educating them about basic energy transformation technologies.
Course Content: The basic concepts in engineering, definition of a system, basic scientific units, the concept of energy, transformation of energy via a block diagram approach, conventional sources of energy, alternative sources of energy, renewable energy, role of the energy systems engineers in today's world and in the future

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Ders Akış Planı

Week Subject Related Preparation
1) Basic concepts of engineering: Duties and responsibilities of engineers in general engineering ethics -
2) System Definition: Definition of a system and its surroundings, concepts of input and output -
3) Basic Scientific Units: SI and British unit systems, unit conversions -
4) Transformation of Energy via a Block Diagram Approach: Interaction of the sub-systems between each other, basic energy transformation processes -
5) Transformation of Energy via a Block Diagram Approach: Basic Energy Transformation Processes -
6) Conventional Sources of Energy: Petroleum, natural gas, coal -
7) Alternative Sources of Energy: Hydrogen energy, fuel cells, nuclear energy -
8) Renewable Energy: Solar energy, wind energy, bio-energy -
9) The Role of Energy Systems Engineers in Today’s World and in the Future: The work scope of energy systems engineers, current and future trends in energy systems engineering -
10) Term Project Presentations The students should revise the lecture notes on the related topic of that particular day's presentation.
11) Term Project Presentations The students should revise the lecture notes on the related topic of that particular day's presentation.
12) Term Project Presentations The students should revise the lecture notes on the related topic of that particular day's presentation.
13) Term Project Presentations The students should revise the lecture notes on the related topic of that particular day's presentation.
14) Term Project Presentations The students should revise the lecture notes on the related topic of that particular day's presentation.
15) Preparation for the final exam -
16) Preparation for the final exam -

Sources

Course Notes / Textbooks: Ders notları dersi veren öğretim elemanı tarafından sağlanacaktır.

Lecture notes will be provided by the lecturer.
References: “Energy Systems Engineering – Evaluation and Implementation”, Francis M.Vanek & Louis D. Albright (2008)
ISBN-10: 0071495932

Ders - Program Öğrenme Kazanım İlişkisi

Ders Öğrenme Kazanımları
Program Outcomes
1) Adequate knowledge in mathematics, science and civil engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3) Ability to design a complex system, process, structural and/or structural members to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in civil engineering applications; ability to use civil engineering technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or civil engineering research topics.
6) Ability to work effectively within and multi-disciplinary teams; individual study skills.
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing.
8) Awareness of the necessity of lifelong learning; ability to access information to follow developments in civil engineering technology.
9) To act in accordance with ethical principles, professional and ethical responsibility; having awareness of the importance of employee workplace health and safety.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of civil engineering solutions.

Ders - Öğrenme Kazanımı İlişkisi

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and civil engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3) Ability to design a complex system, process, structural and/or structural members to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in civil engineering applications; ability to use civil engineering technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or civil engineering research topics.
6) Ability to work effectively within and multi-disciplinary teams; individual study skills.
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing.
8) Awareness of the necessity of lifelong learning; ability to access information to follow developments in civil engineering technology.
9) To act in accordance with ethical principles, professional and ethical responsibility; having awareness of the importance of employee workplace health and safety.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of civil engineering solutions.

Öğrenme Etkinliği ve Öğretme Yöntemleri

Ölçme ve Değerlendirme Yöntemleri ve Kriterleri

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 20
Presentation 1 % 40
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

İş Yükü ve AKTS Kredisi Hesaplaması

Activities Number of Activities Workload
Course Hours 14 28
Study Hours Out of Class 16 80
Presentations / Seminar 5 10
Final 1 2
Total Workload 120