ARC3967 Urban Design TheoryBahçeşehir UniversityDegree Programs CIVIL ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
CIVIL ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Ders Genel Tanıtım Bilgileri

Course Code: ARC3967
Ders İsmi: Urban Design Theory
Ders Yarıyılı: Fall
Spring
Ders Kredileri:
Theoretical Practical Credit ECTS
2 0 2 4
Language of instruction: English
Ders Koşulu:
Ders İş Deneyimini Gerektiriyor mu?: No
Type of course: Non-Departmental Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi NESLİHAN AYDIN YÖNET
Course Lecturer(s):
Course Assistants:

Dersin Amaç ve İçeriği

Course Objectives: The main objective of this course is to define contemporary urban design theory in an interdisciplinary framework that includes architecture, planning, and landscape design
Course Content:
Urban Design Theory provides students with an introduction to theories, concepts, methods, and contemporary issues in urban design. Contemporary urban design is the process of collaboration between the architecture, planning, and landscape architecture professions. This collaboration is discussed by the important approaches and the selected examples.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Ders Akış Planı

Week Subject Related Preparation
1) Introduction .
2) What is Urban Design?
3) Urban Evolution
4) Planning Movements
5) Urban Form, Urban Patterns, and Urban Morphology
6) Public Space
7) Sustainability
8) Pandemic and City
9) Midterm
10) Student Presentations and Discussion
11) Student Presentations and Discussion
12) Student Presentations and Discussion
13) Poster Critics of the Final Submission
14) Evaluation / Final Discussion

Sources

Course Notes / Textbooks: .
References: • Lynch, K. (1960), The Image of The City, The MIT Press, Massachusetts, USA.
• Alexander, C., Ishikawa, S., Silverstein, M., with Jacobson, M., Fiksdahl - King, I., Angel, S. (1977), A Pattern Language: Towns, Buildings, Construction.
• Lynch, K. (1981), Good City Form, The MIT Press, Massachusetts, USA.
• Broadbent, G. (1990) Emerging Concepts in Urban Space Design.
• Jacobs, J. (1993), The Death and Life of Great American Cities.
• Jacobs, A. B. (1996), Great Streets.
• Blakely, E. J., Snyder, M. G. (1997), Fortress America: Gated Communities in the United States.
• Lang, J. (2005), Urban Design: A typology of Procedures and Products. Illustrated with over 50 Case Studies.
• Gehl, J., Cities for People, Island Press, 2010.

Ders - Program Öğrenme Kazanım İlişkisi

Ders Öğrenme Kazanımları
Program Outcomes
1) Adequate knowledge in mathematics, science and civil engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3) Ability to design a complex system, process, structural and/or structural members to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in civil engineering applications; ability to use civil engineering technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or civil engineering research topics.
6) Ability to work effectively within and multi-disciplinary teams; individual study skills.
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing.
8) Awareness of the necessity of lifelong learning; ability to access information to follow developments in civil engineering technology.
9) To act in accordance with ethical principles, professional and ethical responsibility; having awareness of the importance of employee workplace health and safety.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of civil engineering solutions.

Ders - Öğrenme Kazanımı İlişkisi

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and civil engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3) Ability to design a complex system, process, structural and/or structural members to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in civil engineering applications; ability to use civil engineering technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or civil engineering research topics.
6) Ability to work effectively within and multi-disciplinary teams; individual study skills.
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing.
8) Awareness of the necessity of lifelong learning; ability to access information to follow developments in civil engineering technology.
9) To act in accordance with ethical principles, professional and ethical responsibility; having awareness of the importance of employee workplace health and safety.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of civil engineering solutions.

Öğrenme Etkinliği ve Öğretme Yöntemleri

Ölçme ve Değerlendirme Yöntemleri ve Kriterleri

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 10
Presentation 1 % 25
Midterms 1 % 25
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

İş Yükü ve AKTS Kredisi Hesaplaması

Activities Number of Activities Duration (Hours) Workload
Course Hours 13 2 26
Study Hours Out of Class 12 6 72
Presentations / Seminar 2 2 4
Midterms 1 2 2
Final 1 2 2
Total Workload 106