GEN4053 Transgenic TechnologyBahçeşehir UniversityDegree Programs DIGITAL GAME DESIGNGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
DIGITAL GAME DESIGN
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
GEN4053 Transgenic Technology Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. GÜLAY BULUT
Recommended Optional Program Components: There is none.
Course Objectives: The objective of the course is to provide information about transgenic technology. Besides technical information; the use, risk assessment and biosafety regulations of transgenic organisms will be discussed.

Learning Outcomes

The students who have succeeded in this course;
1. Discuss the technology behind transgenic organisms.
2. Recognize how genetically modified animals, plants and microorganisms are achieved.
3. Discuss the reasons of gene manipulation.
4. Define the application areas of trangenic organisms.
5. Recognize the benefits and risks of transgenic organisms.
6. Perform risk assessment.
7. Discuss the biosafety regulations.

Course Content

Bitki, hayvan ve mikroorganizmalarda gen transfer yöntemleri; transgenik teknolojinin uygulama alanları; risk analizi ve biyogüvenlik düzenlemeleri üzerine tartışmalar.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Genetic Engineering and Biotechnology: Introduction Reading
2) Host-vector systems I Reading
3) Host-vector systems II Reading
4) Transgenic plant technology I Reading
5) Transgenic plant technology II Reading
6) Applications of transgenic plants I Reading
7) Applications of transgenic plants II Reading
8) Applications of transgenic plants III Reading
9) Overview Reading
10) Production of transgenic animals I Reading
11) Production of transgenic animals II Reading
12) Applications of transgenic animals Reading
13) Diagnosis of diseases and gene therapy Reading
14) Recent improvements in transgenic technology Reading

Sources

Course Notes / Textbooks: Relevant reviews, research papers and hand-outs will be supplied.
References: 1)Principles of gene manipulation and genomics, Primrose SB and Tywan RM, 7th edition, 2006, Blacwell Publishing, ISBN: 9781405135443.

2)Molecular Biotechnology: principles and applications of recombinant DNA, Glick BR and Pasternak JJ.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 5
Presentation 1 % 20
Midterms 1 % 25
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Comprehend the conceptual importance of the game in the field of communication, ability to implement the player centered application to provide design.
2) Analyze, synthesize, and evaluate information and ideas from various perspectives.
3) Analyze the key elements that make up specific game genres, forms of interactions, mode of narratives and understand how they are employed effectively to create a successful game.
4) Understand game design theories and methods as well as implement them during game development; to make enjoyable, attractive, instructional and immersive according to the target audience.
5) Understand the technology and computational principles involved in developing games and master the use of game engines.
6) Understand the process of creation and use of 2D and 3D assets and animation for video games.
7) Understand and master the theories and methodologies of understanding and measuring player experience and utilize them during game development process.
8) Comprehend and master how ideas, concepts and topics are conveyed via games followed by the utilization of these aspects during the development process.
9) Manage the game design and development process employing complete documentation; following the full game production pipeline via documentation.
10) Understand and employ the structure and work modes of game development teams; comprehend the responsibilities of team members and collaborations between them while utilizing this knowledge in practice.
11) Understand the process of game publishing within industry standards besides development and utilize this knowledge practice.
12) Pitching a video game to developers, publishers, and players; mastering the art of effectively communicating and marketing the features and commercial potential of new ideas, concepts or games.