ESE1001 Introduction to Energy Systems EngineeringBahçeşehir UniversityDegree Programs ADVERTISINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementBologna CommissionNational Qualifications
ADVERTISING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
ESE1001 Introduction to Energy Systems Engineering Spring 2 0 2 5
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Assist. Prof. NEZİHE YILDIRAN
Recommended Optional Program Components: Not available.
Course Objectives: This course aims at introducing freshmen energy systems engineering students their future duties and responsibilities as well as educating them about basic energy transformation technologies.

Learning Outcomes

The students who have succeeded in this course;
I. Recognize the basic duties and responsibilities of engineers as professionals
II. Define basic engineering concepts like system, surroundings, input and output
III. Summarize universally accepted units for basic engineering quantities
IV. Explain energy transformation processes briefly
V. Classify energy sources as conventional and renewable
VI. Debate the role of energy system engineers in today’s world as well as the future

Course Content

The basic concepts in engineering, definition of a system, basic scientific units, the concept of energy, transformation of energy via a block diagram approach, conventional sources of energy, alternative sources of energy, renewable energy, role of the energy systems engineers in today's world and in the future

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Basic concepts of engineering: Duties and responsibilities of engineers in general engineering ethics -
2) System Definition: Definition of a system and its surroundings, concepts of input and output -
3) Basic Scientific Units: SI and British unit systems, unit conversions -
4) Transformation of Energy via a Block Diagram Approach: Interaction of the sub-systems between each other, basic energy transformation processes -
5) Transformation of Energy via a Block Diagram Approach: Basic Energy Transformation Processes -
6) Conventional Sources of Energy: Petroleum, natural gas, coal -
7) Alternative Sources of Energy: Hydrogen energy, fuel cells, nuclear energy -
8) Renewable Energy: Solar energy, wind energy, bio-energy -
9) The Role of Energy Systems Engineers in Today’s World and in the Future: The work scope of energy systems engineers, current and future trends in energy systems engineering -
10) Term Project Presentations The students should revise the lecture notes on the related topic of that particular day's presentation.
11) Term Project Presentations The students should revise the lecture notes on the related topic of that particular day's presentation.
12) Term Project Presentations The students should revise the lecture notes on the related topic of that particular day's presentation.
13) Term Project Presentations The students should revise the lecture notes on the related topic of that particular day's presentation.
14) Term Project Presentations The students should revise the lecture notes on the related topic of that particular day's presentation.
15) Preparation for the final exam -
16) Preparation for the final exam -

Sources

Course Notes / Textbooks: Ders notları dersi veren öğretim elemanı tarafından sağlanacaktır.

Lecture notes will be provided by the lecturer.
References: “Energy Systems Engineering – Evaluation and Implementation”, Francis M.Vanek & Louis D. Albright (2008)
ISBN-10: 0071495932

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 20
Presentation 1 % 40
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 28
Study Hours Out of Class 16 80
Presentations / Seminar 5 10
Final 1 2
Total Workload 120

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To prepare students to become communication professionals by focusing on strategic thinking, professional writing, ethical practices, and the innovative use of both traditional and new media 2
2) To be able to explain and define problems related to the relationship between facts and phenomena in areas such as Advertising, Persuasive Communication, and Brand Management
3) To critically discuss and interpret theories, concepts, methods, tools, and ideas in the field of advertising
4) To be able to follow and interpret innovations in the field of advertising
5) To demonstrate a scientific perspective in line with the topics they are curious about in the field.
6) To address and solve the needs and problems of the field through the developed scientific perspective
7) To recognize and understand all the dynamics within the field of advertising
8) To analyze and develop solutions to problems encountered in the practical field of advertising