DIGITAL GAME DESIGN | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
SEN2212 | Data Structures and Algorithms II | Spring | 2 | 2 | 3 | 7 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Assist. Prof. BETÜL ERDOĞDU ŞAKAR |
Course Lecturer(s): |
Assist. Prof. BETÜL ERDOĞDU ŞAKAR Assist. Prof. YÜCEL BATU SALMAN RA SEVGİ CANPOLAT RA MERVE ARITÜRK |
Recommended Optional Program Components: | None |
Course Objectives: | The objective of this course is to analyze data structures and algorithms used in software engineering in detail. After completing the course, the student will have knowledge of applying, implementing and analysis of data structures, including, trees, binary search trees, balanced search trees, heaps and graphs. Certain fundamental techniques, such as sorting, hashing and greedy algorithms are also taught. |
The students who have succeeded in this course; The students who have succeeded in this course; 1) Describe and apply basic object oriented programming principles. 2) Implement basic data structures such as trees, binary search trees, balanced search trees, heaps and graphs. 3) Describe and implement sorting algorithms on common data structures. 4) Describe and implement searching algorithms on common data structures. 5) Implement and use hashing algorithms. 6) Implement and use greedy algorithms. 7) Choose and design data structures for writing efficient programs. |
The course content is composed of basic data structures like trees, binary search trees, balanced search trees, heaps, graphs and sorting, hashing and greedy algorithms. |
Week | Subject | Related Preparation |
1) | Introduction and Sorting Algorithms. | Sorting algorithms. |
2) | Introduction to different tree structures. | Trees. |
3) | Introduction to binary search trees. | Binary search trees. |
4) | Implementing binary search tree using Java. | Binary search trees. |
5) | Introduction to balanced trees and implementing AVL balanced tree structure using Java. | AVL trees. |
6) | Using other balanced tree structure using Java. | Other balanced trees. |
7) | Using heap structure and implementing them using Java. | Heap. |
8) | Using heaps as priority queues. Midterm. | Heap. |
9) | Analyzing and implementing hashing algorithms. | Hashing algorithms. |
10) | Analyzing and implementing graph structure using Java. | Graph. |
11) | Analyzing and implementing graph algorithms. | Graph algorithms. |
12) | Analyzing and implementing greedy algorithms. | Greedy algorithms. |
13) | Analyzing and implementing greedy algorithms. Quiz. | Greedy algorithms. |
14) | Review. |
Course Notes / Textbooks: | Data Structures & Problem Solving Using Java (Mark Allen Weiss) Data Structures and Algorithm Analysis in Java (Mark Allen Weiss) Data Structures and Abstractions with Java (Frank Carrano) |
References: | Yok. |
Semester Requirements | Number of Activities | Level of Contribution |
Application | 4 | % 10 |
Quizzes | 1 | % 10 |
Project | 1 | % 15 |
Midterms | 1 | % 25 |
Final | 1 | % 40 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 45 | |
PERCENTAGE OF FINAL WORK | % 55 | |
Total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 2 | 28 |
Laboratory | 14 | 2 | 28 |
Study Hours Out of Class | 12 | 2 | 24 |
Project | 10 | 2 | 20 |
Homework Assignments | 2 | 5 | 10 |
Quizzes | 5 | 2 | 10 |
Midterms | 5 | 3 | 15 |
Final | 10 | 3 | 30 |
Total Workload | 165 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Comprehend the conceptual importance of the game in the field of communication, ability to implement the player centered application to provide design. | |
2) | Analyze, synthesize, and evaluate information and ideas from various perspectives. | |
3) | Analyze the key elements that make up specific game genres, forms of interactions, mode of narratives and understand how they are employed effectively to create a successful game. | |
4) | Understand game design theories and methods as well as implement them during game development; to make enjoyable, attractive, instructional and immersive according to the target audience. | |
5) | Understand the technology and computational principles involved in developing games and master the use of game engines. | |
6) | Understand the process of creation and use of 2D and 3D assets and animation for video games. | |
7) | Understand and master the theories and methodologies of understanding and measuring player experience and utilize them during game development process. | |
8) | Comprehend and master how ideas, concepts and topics are conveyed via games followed by the utilization of these aspects during the development process. | |
9) | Manage the game design and development process employing complete documentation; following the full game production pipeline via documentation. | |
10) | Understand and employ the structure and work modes of game development teams; comprehend the responsibilities of team members and collaborations between them while utilizing this knowledge in practice. | |
11) | Understand the process of game publishing within industry standards besides development and utilize this knowledge practice. | |
12) | Pitching a video game to developers, publishers, and players; mastering the art of effectively communicating and marketing the features and commercial potential of new ideas, concepts or games. |