ADVERTISING | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
SEN2212 | Data Structures and Algorithms II | Fall | 2 | 2 | 3 | 7 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Assist. Prof. ÖZGE YÜCEL KASAP |
Course Lecturer(s): |
Assist. Prof. BETÜL ERDOĞDU ŞAKAR Assoc. Prof. YÜCEL BATU SALMAN RA SEVGİ CANPOLAT RA MERVE ARITÜRK |
Recommended Optional Program Components: | None |
Course Objectives: | The objective of this course is to analyze data structures and algorithms used in software engineering in detail. After completing the course, the student will have knowledge of applying, implementing and analysis of data structures, including, trees, binary search trees, balanced search trees, heaps and graphs. Certain fundamental techniques, such as sorting, hashing and greedy algorithms are also taught. The teaching methods of the course include lectures, practice, and project preparation. |
The students who have succeeded in this course; The students who have succeeded in this course; 1) Describe and apply basic object oriented programming principles. 2) Implement basic data structures such as trees, binary search trees, balanced search trees, heaps and graphs. 3) Describe and implement sorting algorithms on common data structures. 4) Describe and implement searching algorithms on common data structures. 5) Implement and use hashing algorithms. 6) Implement and use greedy algorithms. 7) Choose and design data structures for writing efficient programs. |
The course content is composed of basic data structures like trees, binary search trees, balanced search trees, heaps, graphs and sorting, hashing and greedy algorithms. |
Week | Subject | Related Preparation |
1) | Introduction and Sorting Algorithms. | Sorting algorithms. |
2) | Introduction to different tree structures. | Trees. |
3) | Introduction to binary search trees. | Binary search trees. |
4) | Implementing binary search tree using Java. | Binary search trees. |
5) | Introduction to balanced trees and implementing AVL balanced tree structure using Java. | AVL trees. |
6) | Using other balanced tree structure using Java. | Other balanced trees. |
7) | Using heap structure and implementing them using Java. | Heap. |
8) | Using heaps as priority queues. Midterm. | Heap. |
9) | Analyzing and implementing hashing algorithms. | Hashing algorithms. |
10) | Analyzing and implementing graph structure using Java. | Graph. |
11) | Analyzing and implementing graph algorithms. | Graph algorithms. |
12) | Analyzing and implementing greedy algorithms. | Greedy algorithms. |
13) | Analyzing and implementing greedy algorithms. Quiz. | Greedy algorithms. |
14) | Review. |
Course Notes / Textbooks: | Data Structures & Problem Solving Using Java (Mark Allen Weiss) Data Structures and Algorithm Analysis in Java (Mark Allen Weiss) Data Structures and Abstractions with Java (Frank Carrano) |
References: | Yok. |
Semester Requirements | Number of Activities | Level of Contribution |
Laboratory | 2 | % 10 |
Quizzes | 2 | % 10 |
Project | 1 | % 15 |
Midterms | 1 | % 25 |
Final | 1 | % 40 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 45 | |
PERCENTAGE OF FINAL WORK | % 55 | |
Total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 2 | 28 |
Laboratory | 14 | 3 | 42 |
Project | 1 | 30 | 30 |
Quizzes | 2 | 15 | 30 |
Midterms | 1 | 20 | 20 |
Final | 1 | 25 | 25 |
Total Workload | 175 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | To prepare students to become communication professionals by focusing on strategic thinking, professional writing, ethical practices, and the innovative use of both traditional and new media | 2 |
2) | To be able to explain and define problems related to the relationship between facts and phenomena in areas such as Advertising, Persuasive Communication, and Brand Management | |
3) | To critically discuss and interpret theories, concepts, methods, tools, and ideas in the field of advertising | |
4) | To be able to follow and interpret innovations in the field of advertising | |
5) | To demonstrate a scientific perspective in line with the topics they are curious about in the field. | |
6) | To address and solve the needs and problems of the field through the developed scientific perspective | |
7) | To recognize and understand all the dynamics within the field of advertising | |
8) | To analyze and develop solutions to problems encountered in the practical field of advertising |