DIGITAL GAME DESIGN | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
INE4011 | System Simulation | Spring | 2 | 2 | 3 | 6 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Prof. Dr. MUSTAFA ÖZBAYRAK |
Course Lecturer(s): |
Prof. Dr. MUSTAFA ÖZBAYRAK RA ESRA ADIYEKE Prof. Dr. FAİK TUNÇ BOZBURA |
Recommended Optional Program Components: | None |
Course Objectives: | This course is designed for junior level Industrial Engineering and close disciplines' students to give the fundamental concepts of modelling and analysis of discrete systems. The course aims to provide rigorous input and output analyses of the simulation model created using the statistical and probabilistic concepts as well as modelling the discrete systems, with the examples from both manufacturing and service systems using a general purpose simulation software. |
The students who have succeeded in this course; I. Recognize the basic principles of simulation modeling. II. Define and use appropriate performance metrics when modeling a system. III. Recognize the basic concepts of a discrete event simulation model including model components, flowchart, and event list. IV. Collect and manage performance measurement data. V. Data collection or production from a sample data set. Statistical analysis of the sample data to estimate or approximate the probabilistic distribution and its parameters. VI. Modelling and analysis of discrete event simulation models of both manufacturing and service systems using generic simulation program called ARENA. VII. Developing simulation models that address critical research issues and/or industrial systems. VIII. Recognizing how a computer simulation program can be used to model complex systems and solve related decision problems under different working conditions, which are presented through several what-if scenarios and analyses. IX. Running a simulation model under different scenarios through either short-term but with consecutive replications or one very long run to get turely random output and their statistical analyses. X. Apply a simulation project from start to finish following the stages, data collection or generation, designing the model, building the model, creating the working scenarios, running the simulation with multiple replications and statistical analyses of the output generated. |
This course is an alternative modelling method to mathematical optimization to model the complex systems. This course aims to teach the fundamental principles of simulation modelling, its steps, data creation, design and create a simulation model with the help of a simulation software, running the model under different system scenarios, obtaining the output as well as analysing and reporting output. |
Week | Subject | Related Preparation |
1) | Introduction to Simulation modeling | |
2) | A guided tour of modelling steps in Simulation. | |
3) | Statistics and Probability for Simulation Modelling I | |
4) | Statistics and Probability for Simulation Modelling II | |
5) | Modelling a simple system using ARENA | |
6) | System Modelling I | |
7) | System Modelling II | |
8) | Selecting the Input Analysis I | |
9) | Selecting Input Probability Distribution II | |
10) | System Modelling I | |
11) | Random Number Generation and Animasions | |
12) | Modelling Complex Systems | |
13) | Output Analysis | |
14) | Output Analysis II | |
15) | Entity Transfer in Modelling | |
16) | Simulation of Manufacturing Systems |
Course Notes / Textbooks: | W. D. Kelton, R. P. Sadowski, D. T. Sturrock, Simulation with Arena-6th Edition, McGraw-Hill, 2015. J. Banks, J. S. Carson II, B. L. Nelson, D.M. Nicol, Discrete-Event System Simulation, 5th Edition, Prentice Hall, 2010. |
References: | Lecture Notes and supporting materials collected from several academic resources as well as company reports and white papers. |
Semester Requirements | Number of Activities | Level of Contribution |
Quizzes | 2 | % 10 |
Homework Assignments | 4 | % 10 |
Project | 1 | % 20 |
Midterms | 1 | % 20 |
Final | 1 | % 40 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 40 | |
PERCENTAGE OF FINAL WORK | % 60 | |
Total | % 100 |
Activities | Number of Activities | Workload |
Course Hours | 14 | 28 |
Laboratory | 14 | 28 |
Study Hours Out of Class | 13 | 34 |
Project | 3 | 9 |
Homework Assignments | 2 | 6 |
Quizzes | 2 | 18 |
Midterms | 1 | 10 |
Final | 1 | 12 |
Total Workload | 145 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Comprehend the conceptual importance of the game in the field of communication, ability to implement the player centered application to provide design. | |
2) | Analyze, synthesize, and evaluate information and ideas from various perspectives. | |
3) | Analyze the key elements that make up specific game genres, forms of interactions, mode of narratives and understand how they are employed effectively to create a successful game. | |
4) | Understand game design theories and methods as well as implement them during game development; to make enjoyable, attractive, instructional and immersive according to the target audience. | |
5) | Understand the technology and computational principles involved in developing games and master the use of game engines. | |
6) | Understand the process of creation and use of 2D and 3D assets and animation for video games. | |
7) | Understand and master the theories and methodologies of understanding and measuring player experience and utilize them during game development process. | |
8) | Comprehend and master how ideas, concepts and topics are conveyed via games followed by the utilization of these aspects during the development process. | |
9) | Manage the game design and development process employing complete documentation; following the full game production pipeline via documentation. | |
10) | Understand and employ the structure and work modes of game development teams; comprehend the responsibilities of team members and collaborations between them while utilizing this knowledge in practice. | |
11) | Understand the process of game publishing within industry standards besides development and utilize this knowledge practice. | |
12) | Pitching a video game to developers, publishers, and players; mastering the art of effectively communicating and marketing the features and commercial potential of new ideas, concepts or games. |