EEE3705 Electromagnetic TheoryBahçeşehir UniversityDegree Programs DIGITAL GAME DESIGNGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
DIGITAL GAME DESIGN
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
EEE3705 Electromagnetic Theory Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ÖMER POLAT
Course Lecturer(s): Dr. Öğr. Üyesi ÖMER POLAT
Recommended Optional Program Components: None
Course Objectives: The objective of the course is to make the students grasp and understand the classical electric and magnetic phenomena, and use the underlying physical theories in order to solve certain electrodynamics problems.

Learning Outcomes

The students who have succeeded in this course;
The student will be able to
1. calculate gradient, divergence and curl of the vector
2. calculate the electric field of the point charge and the continuous charge distribution in matter and in free space; define the divergence and the curl of the electric field.
3. calculate the electric potential of the point charge and the continuous charge distribution in matter and in free space.
4.calculate the magnetic field of steady currents and define the divergence and curl of magnetic field.

Course Content

In this course, electrostatics, magnetostatics will be covered.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Review of vector analysis
2) Review of vector analysis
3) Coulomb's Law
4) Gauss' Law
5) Dielectrics
6) Electric Potential and Applications
7) Magnetic Field in Vacuum
8) Magnetic Field in Materials
9) Magnetic forces and torque
10) Induction and Faraday's Law
11) Inductance
12) Maxwell's Equations
13) Electromagnetic Waves
14) Reflection and Transmission on Interface

Sources

Course Notes / Textbooks: Fundamentals of Engineering Electromagnetics, by D. K. Cheng, Prentice Hall, 1992.
References: 1. Branislav M. Notaros, “Electromagnetics,” Prentice Hall, 2011.
2.David J. Griffiths, “Introduction to Electrodynamics,” Prentice Hall, 1999.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 5 % 25
Midterms 1 % 35
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 16 6 96
Quizzes 5 1 5
Midterms 1 2 2
Final 1 2 2
Total Workload 147

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Comprehend the conceptual importance of the game in the field of communication, ability to implement the player centered application to provide design.
2) Analyze, synthesize, and evaluate information and ideas from various perspectives.
3) Analyze the key elements that make up specific game genres, forms of interactions, mode of narratives and understand how they are employed effectively to create a successful game.
4) Understand game design theories and methods as well as implement them during game development; to make enjoyable, attractive, instructional and immersive according to the target audience.
5) Understand the technology and computational principles involved in developing games and master the use of game engines.
6) Understand the process of creation and use of 2D and 3D assets and animation for video games.
7) Understand and master the theories and methodologies of understanding and measuring player experience and utilize them during game development process.
8) Comprehend and master how ideas, concepts and topics are conveyed via games followed by the utilization of these aspects during the development process.
9) Manage the game design and development process employing complete documentation; following the full game production pipeline via documentation.
10) Understand and employ the structure and work modes of game development teams; comprehend the responsibilities of team members and collaborations between them while utilizing this knowledge in practice.
11) Understand the process of game publishing within industry standards besides development and utilize this knowledge practice.
12) Pitching a video game to developers, publishers, and players; mastering the art of effectively communicating and marketing the features and commercial potential of new ideas, concepts or games.