ADVERTISING | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
CMP4502 | Distributed Databases | Spring | 3 | 0 | 3 | 6 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Assist. Prof. TARKAN AYDIN |
Recommended Optional Program Components: | None |
Course Objectives: | Communication paradigms: client/server protocols, remote procedure call (e.g., Java RMI), multicast protocols handling asynchronous communication and failures. Distributed transaction management requires enhanced concurrency control methods. Comparing algorithms proposed by researchers and commercial solutions. Replicating data to increase fault-tolerance and the performance of databases. |
The students who have succeeded in this course; 1. Be able to understand Distributed computing systems, their characteristics, and desired functionality 2. Become familiar with Distributed computer system models and architectures 3. Be able to understand Synchronization 4. Be able to understand Replication 5. Be able to use distributed naming 6. Be able to understand Fault-tolerance |
1.Introduction 2.DDBMS Architecture 3.Distributed Database Design 4.Semantic Integrity Control 5.Query decomposition and data localization 6.Optimization of Distributed Queries 7.Transactions 8.Concurrency Control 9.Reliability |
Week | Subject | Related Preparation |
1) | Introduction: syllabus, administration and organization of the course, general introduction in distributed DBMS | None |
2) | DDBMS Architecture: definition of DDBMS architecture, ANSI/SPARC standard, global, local, external, and internal schemas, DDBMS architectures, components of DDBMS | None |
3) | Distributed Database Design: conceptual design (what can be distributed, design patterns), top-down, bottom-up patterns, technical design (fragmentation, allocation and replication of fragments, optimality, heuristics) | None |
4) | Semantic Integrity Control: view management, security control, integrity control | None |
5) | Semantic Integrity Control: view management, security control, integrity control | None |
6) | Midterm Exam 1 | Review all the topics |
7) | Query decomposition and data localization: normalization, analysis, elimination of redundancy, rewriting, reduction for HF, reduction for VF | None |
8) | Optimization of Distributed Queries: basic concepts, distributed cost model, database statistics | None |
9) | Optimization of Distributed Queries: ordering of joins and semijoins, query optimization algorithms, INGRES, System R, hill climbing | None |
10) | Transactions: introduction to transactions, definition and examples, properties, classification, processing issues, execution | None |
11) | Midterm Exam 2 | Review all the topics |
12) | Concurrency Control: definition, execution schedules, examples, locking based algorithms, timestamp ordering algorithm, deadlock management | None |
13) | Reliability: definitions, basic concepts, local recovery management, distributed reliability protocols | None |
14) | Reliability: distributed reliability protocols, 2PC protocol | None |
Course Notes / Textbooks: | Principles of Distributed Database Systems by M. Tamer Özsu and Patrick Valduriez |
References: | None |
Semester Requirements | Number of Activities | Level of Contribution |
Project | 1 | % 10 |
Midterms | 2 | % 40 |
Final | 1 | % 50 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 40 | |
PERCENTAGE OF FINAL WORK | % 60 | |
Total | % 100 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | To prepare students to become communication professionals by focusing on strategic thinking, professional writing, ethical practices, and the innovative use of both traditional and new media | 2 |
2) | To be able to explain and define problems related to the relationship between facts and phenomena in areas such as Advertising, Persuasive Communication, and Brand Management | |
3) | To critically discuss and interpret theories, concepts, methods, tools, and ideas in the field of advertising | |
4) | To be able to follow and interpret innovations in the field of advertising | |
5) | To demonstrate a scientific perspective in line with the topics they are curious about in the field. | |
6) | To address and solve the needs and problems of the field through the developed scientific perspective | |
7) | To recognize and understand all the dynamics within the field of advertising | |
8) | To analyze and develop solutions to problems encountered in the practical field of advertising |