ADVERTISING | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
CMP4323 | Wireless and Mobile Networks | Spring | 3 | 0 | 3 | 6 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Assist. Prof. ECE GELAL SOYAK |
Recommended Optional Program Components: | None |
Course Objectives: | This course covers wireless and mobile networking concepts and protocols with real-world examples. This course aims to provide students with an understanding about the wireless and mobile networks, as well as related problem-solving skills using mathematics and engineering principles. |
The students who have succeeded in this course; I. An ability to design algorithms to solve wireless communication problems II. An ability to develop test and monitoring programs for wireless networks III. An ability to design packet size optimization techniques for wireless networks IV. An ability to analyze and evaluate the performance of wireless networks V. An ability to design communication solutions for vehicular networks VI. An ability to develop simple code to address network challenges, and to prepare academically-written project reports |
This course covers wireless and mobile networking concepts and protocols with real-world examples. After completing the course, students will get a basic understanding about the wireless and mobile networks and related problem solving discipline using mathematics / engineering principles. 1st Week: An overview of wireless networks 2nd Week: Broadband Communication Technologies 3rd Week: 3G Communication Technologies 4th Week: 4G and Beyond 5th Week: Wireless Local Area Networks 6th Week: Midterm Exam-I 7th Week: Near Field Communications 8th Week: RFID 9th Week: Ad Hoc Networks 10th Week: Wireless Sensor Networks 11th Week: Midterm Exam-II 12th Week: Packet Size Optimization in Wireless Networks 13th Week: Underwater Acoustic and Underground Communications 14th Week: Vehicular Networks and Review The teaching methods of the course are as follows: - Lecture - Individual Study - Reading - Group Work - Problem Solving - Application - Discussion - Project Preparation |
Week | Subject | Related Preparation |
1) | 1st Week: An overview of wireless networks | |
2) | 2nd Week: Broadband Communication Technologies | |
3) | 3rd Week: 3G Communication Technologies | |
4) | 4th Week: 4G and Beyond | |
5) | 5th Week: Wireless Local Area Networks | |
6) | 6th Week: Midterm Exam-I | |
7) | 7th Week: Near Field Communications | |
8) | 8th Week: RFID | |
9) | 9th Week: Ad Hoc Networks | |
10) | 10th Week: Wireless Sensor Networks | |
11) | 11th Week: Midterm Exam-II | |
12) | 12th Week: Packet Size Optimization in Wireless Networks | |
13) | 13th Week: Underwater Acoustic and Underground Communications | |
14) | 14th Week: Vehicular Networks |
Course Notes / Textbooks: | 1. W. Stallings, “Data and Computer Communications,” Prentice Hall, 8th edition, 2007. |
References: | 2. I.F. Akyildiz and M.C. Vuran, ''Wireless Sensor Networks,'' John Wiley & Sons, 2010. |
Semester Requirements | Number of Activities | Level of Contribution |
Attendance | 10 | % 5 |
Project | 1 | % 25 |
Midterms | 2 | % 40 |
Final | 1 | % 30 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 45 | |
PERCENTAGE OF FINAL WORK | % 55 | |
Total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 3 | 42 |
Study Hours Out of Class | 7 | 4 | 28 |
Presentations / Seminar | 1 | 20 | 20 |
Project | 1 | 25 | 25 |
Paper Submission | 1 | 10 | 10 |
Final | 1 | 15 | 15 |
Total Workload | 140 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | To prepare students to become communication professionals by focusing on strategic thinking, professional writing, ethical practices, and the innovative use of both traditional and new media | 2 |
2) | To be able to explain and define problems related to the relationship between facts and phenomena in areas such as Advertising, Persuasive Communication, and Brand Management | |
3) | To critically discuss and interpret theories, concepts, methods, tools, and ideas in the field of advertising | |
4) | To be able to follow and interpret innovations in the field of advertising | |
5) | To demonstrate a scientific perspective in line with the topics they are curious about in the field. | |
6) | To address and solve the needs and problems of the field through the developed scientific perspective | |
7) | To recognize and understand all the dynamics within the field of advertising | |
8) | To analyze and develop solutions to problems encountered in the practical field of advertising |