ADVERTISING | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
CMP4322 | Advanced Cryptology and Networks | Spring | 3 | 0 | 3 | 6 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Assist. Prof. ECE GELAL SOYAK |
Recommended Optional Program Components: | None |
Course Objectives: | This course aims at equipping students with a deeper understanding of cryptography. It starts by introducing the underlying theory of Galois fields, and targets basic topics of significant practical importance as well as advanced topics of theoretical importance. In the first part of the course, a detailed analysis of standard cryptographic algorithms is made and efficient implementation ideas are discussed, focusing on public key schemes such as RSA, ElGamal and Diffie-Hellman, as well as elliptic curve cryptography and homomorphic encryption. In the second part, application of these algorithms to advanced protocols, such as for authentication, identification, key distribution, zero-knowledge and computationally-private information retrieval, is discussed. In the last part of the course, advanced mathematical algorithms, such as brute-force, baby-step giant-step and the Pohlig-Hellman, for attacking some of the covered cryptographic schemes are discussed. |
The students who have succeeded in this course; I. Gain knowledge on Popular symmetric and public key cryptographic algorithms, II. Gain knowledge on Efficient implementation of cryptographic algorithms, III. Gain knowledge on different attacks against cryptographic algorithms. |
Overview of Cryptography and Network Security. Advanced Encryption Standard (AES), RSA and Elliptic Curve Cryptography. Hash Functions. Efficient Implementation Techniques for cryptographic algorithms. Diffie-Hellman Key Exchange and Meet-in-the Middle Attack. Pohlig-Hellman, Pollard’s Rho and side-channel attacks. Attacks against hash functions. The teaching methods of the course are as follows: - Lecture - Individual Study - Reading - Group Work - Problem Solving - Application - Discussion - Project Preparation |
Week | Subject | Related Preparation |
1) | Overview of Cryptography and Network Security. | |
2) | Advanced Encryption Standard (AES). | |
3) | RSA algorithm. | |
4) | Elliptic curve cryptography. | |
5) | Hash functions. | |
6) | Efficient implementation techniques. | |
7) | Efficient implementation techniques. | |
8) | Efficient implementation techniques. | |
9) | Midterm exam. | |
10) | Diffie-Hellman Key Exchange and Meet-in-the Middle Attack | |
11) | Pohlig Hellman Attack. | |
12) | Pollard’s Rho Attack. | |
13) | Side-Channel Attacks. | |
14) | Attacks Against Hash Functions. |
Course Notes / Textbooks: | Understanding Cryptography, Christof Paar and Jan Pelzl, Springer 2010. Handbook of Applied Cryptography, Alfred Menezes, Paul C. Van Oorschot and Scott A. Vanstone, CRC Press 1997. |
References: |
Semester Requirements | Number of Activities | Level of Contribution |
Attendance | 14 | % 10 |
Project | 1 | % 10 |
Midterms | 1 | % 40 |
Final | 1 | % 40 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 50 | |
PERCENTAGE OF FINAL WORK | % 50 | |
Total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 3 | 42 |
Study Hours Out of Class | 15 | 5 | 75 |
Project | 1 | 21 | 21 |
Midterms | 1 | 2 | 2 |
Final | 1 | 2 | 2 |
Total Workload | 142 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | To prepare students to become communication professionals by focusing on strategic thinking, professional writing, ethical practices, and the innovative use of both traditional and new media | 2 |
2) | To be able to explain and define problems related to the relationship between facts and phenomena in areas such as Advertising, Persuasive Communication, and Brand Management | |
3) | To critically discuss and interpret theories, concepts, methods, tools, and ideas in the field of advertising | |
4) | To be able to follow and interpret innovations in the field of advertising | |
5) | To demonstrate a scientific perspective in line with the topics they are curious about in the field. | |
6) | To address and solve the needs and problems of the field through the developed scientific perspective | |
7) | To recognize and understand all the dynamics within the field of advertising | |
8) | To analyze and develop solutions to problems encountered in the practical field of advertising |