EEE5603 Wireless CommunicationsBahçeşehir UniversityDegree Programs DIGITAL GAME DESIGNGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
DIGITAL GAME DESIGN
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
EEE5603 Wireless Communications Spring 3 0 3 12
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. SAEID KARAMZADEH
Course Lecturer(s): Assoc. Prof. ALKAN SOYSAL
Recommended Optional Program Components: None
Course Objectives: This course aims to teach physical characteristics of wireless medium and several technologies that are specifically designed for transmission over wireless media. Specifically, the students will identify path loss, shadow fading, multi-path fading and diversity. Different wireless channel models will be introduced and their capacity will be analyzed. Students will have the knowledge of modern wireless technologies, such as multi-carrier modulation and OFDM, spread spectrum and CDMA, and multiple antenna systems.

Learning Outcomes

The students who have succeeded in this course;
1. Describe physical medium of a wireless channel,
2. Explain path loss, shadowing and multi-path fading,
3. Describe the effects of time, frequency and space diversity,
4. Gain knowledge on combining techniques,
5. Apply capacity analysis to wireless channel models,
6. Explain multi-carrier modulation and OFDM,
7. Describe the advantages of spreading the spectrum and CDMA,
8. Gain knowledge of multiple antenna systems and MIMO technology
9. Have a broad understanding of multi-user systems

Course Content

Characteristics of wireless channels, such as path loss, shadowing and fading. Different channel models and their capacity calculations. Modern wireless communication technologies.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Overview of wireless communications
2) Path loss and shadowing models
3) Statistical fading, narrowband fading
4) Wideband fading
5) Capacity of wireless channels
6) Adaptive techniques in wireless communication channels
7) Diversity and combining
8) Comparison and discussion of previously mentioned methods. Midterm
10) Multicarrier systems, OFDM
11) Spread Spectrum and CDMA
12) WCDMA and 3G systems
13) Multiple antenna systems, MIMO
14) Multi-user systems

Sources

Course Notes / Textbooks: Wireless Communications, Andrea Goldsmith, Cambridge University Press
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Project 1 % 30
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 30
PERCENTAGE OF FINAL WORK % 70
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Project 4 50
Midterms 8 60
Final 4 48
Total Workload 200

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Comprehend the conceptual importance of the game in the field of communication, ability to implement the player centered application to provide design.
2) Analyze, synthesize, and evaluate information and ideas from various perspectives.
3) Analyze the key elements that make up specific game genres, forms of interactions, mode of narratives and understand how they are employed effectively to create a successful game.
4) Understand game design theories and methods as well as implement them during game development; to make enjoyable, attractive, instructional and immersive according to the target audience.
5) Understand the technology and computational principles involved in developing games and master the use of game engines.
6) Understand the process of creation and use of 2D and 3D assets and animation for video games.
7) Understand and master the theories and methodologies of understanding and measuring player experience and utilize them during game development process.
8) Comprehend and master how ideas, concepts and topics are conveyed via games followed by the utilization of these aspects during the development process.
9) Manage the game design and development process employing complete documentation; following the full game production pipeline via documentation.
10) Understand and employ the structure and work modes of game development teams; comprehend the responsibilities of team members and collaborations between them while utilizing this knowledge in practice.
11) Understand the process of game publishing within industry standards besides development and utilize this knowledge practice.
12) Pitching a video game to developers, publishers, and players; mastering the art of effectively communicating and marketing the features and commercial potential of new ideas, concepts or games.