DIGITAL GAME DESIGN | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
MBG3002 | Techniques in Biological Sciences | Spring | 3 | 0 | 3 | 7 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Dr. MERVE SEVEN |
Recommended Optional Program Components: | There is none. |
Course Objectives: | The aim of this course is to form a substantial theoretical basis to understand key experimental techniques used in modern molecular biology research. |
The students who have succeeded in this course; 1. Discuss DNA isolation, quantification, agarose gel electrophoresis 2. Define Polymerase Chain Reaction (PCR), principle, basic applications, optimization 3. Define Recombinant DNA technology (gene overexpression and silencing vectors, cloning, transfection, transformation) 4. Evaluate DNA Sequence analysis, Southern Blot 5. Define about RNA isolation, quantification, cDNA synthesis, cDNA library construction 6. Define Q-PCR, RT-PCR. miRNA 7. Define Microarray analysis and Northern Blot 8. Identify about Protein isolation, quantification, SDS-PAGE, Commassie Staining 9. Discuss Western Blot, Immunostaining, Protein imaging techniques 10. Define Protein purification techniques 11. Have basic knowledge of the main analytical techniques used in Molecular Biology. |
Experimental techniques course will provide an intensive exposure to the experimental techniques used in molecular biology. It is mainly based on DNA, RNa and protein analysis techniques. |
Week | Subject | Related Preparation |
1) | Introduction and Biomolecules | |
2) | DNA and PCR techniques | |
3) | RNA and gene expression studies | Reading |
4) | DNA sequencing and RNA sequencing | Reading |
5) | DNA Sequence analysis, Southern Blot | Reading |
5) | QPCR and microarray technologies | |
6) | Cloning I | |
7) | Cloning II | |
8) | Subjects overview | Reading |
9) | Proteins as Products | Reading |
10) | Protein isolation, purification and quantification | Reading |
11) | Western Blotting and Immunoprecipitation | |
12) | Analytical Techniques | Reading |
13) | Liquid Chromatography | Reading |
14) | Protein-protein interaction analysis (phage display, yeast two hybrid)-II | Reading |
14) | Mass Spectrometry |
Course Notes / Textbooks: | Ders notları haftalık olarak verilecektir. Course notes will be supplied weekly. |
References: | 1. Current Protocols in Molecular Biology, Wiley Online Library, ISBN: 9780471142720 4. Molecular Cloning: A Laboratory Manual, Joseph Sambrook, David William Russell, CSHL Press, 2001, ISBN 0879695773, 9780879695774 |
Semester Requirements | Number of Activities | Level of Contribution |
Attendance | 14 | % 0 |
Homework Assignments | 1 | % 15 |
Midterms | 1 | % 35 |
Final | 1 | % 50 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 50 | |
PERCENTAGE OF FINAL WORK | % 50 | |
Total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 3 | 42 |
Study Hours Out of Class | 14 | 7 | 98 |
Midterms | 1 | 17 | 17 |
Final | 1 | 18 | 18 |
Total Workload | 175 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Comprehend the conceptual importance of the game in the field of communication, ability to implement the player centered application to provide design. | |
2) | Analyze, synthesize, and evaluate information and ideas from various perspectives. | |
3) | Analyze the key elements that make up specific game genres, forms of interactions, mode of narratives and understand how they are employed effectively to create a successful game. | |
4) | Understand game design theories and methods as well as implement them during game development; to make enjoyable, attractive, instructional and immersive according to the target audience. | |
5) | Understand the technology and computational principles involved in developing games and master the use of game engines. | |
6) | Understand the process of creation and use of 2D and 3D assets and animation for video games. | |
7) | Understand and master the theories and methodologies of understanding and measuring player experience and utilize them during game development process. | |
8) | Comprehend and master how ideas, concepts and topics are conveyed via games followed by the utilization of these aspects during the development process. | |
9) | Manage the game design and development process employing complete documentation; following the full game production pipeline via documentation. | |
10) | Understand and employ the structure and work modes of game development teams; comprehend the responsibilities of team members and collaborations between them while utilizing this knowledge in practice. | |
11) | Understand the process of game publishing within industry standards besides development and utilize this knowledge practice. | |
12) | Pitching a video game to developers, publishers, and players; mastering the art of effectively communicating and marketing the features and commercial potential of new ideas, concepts or games. |