ANZ2009 ToxicologyBahçeşehir UniversityDegree Programs DIGITAL GAME DESIGNGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
DIGITAL GAME DESIGN
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
ANZ2009 Toxicology Spring 2 0 2 3
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: Turkish
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Neslihan Bektaş
Course Lecturer(s): Instructor FIRAT KARA
Recommended Optional Program Components: Anestesia Center
Course Objectives: Live as a result of the continuous development of science and technology communities to the risk of toxic substances, poisoning and related illnesses to provide information about the formation.

Learning Outcomes

The students who have succeeded in this course;
The students who successfully complete this course;

1 Toxicology history, development, principles will have detailed information about,
2 types of intoxication, will have detailed information about the effects of poisoning,
3 of poisoning and toxicity assays will have detailed information about,
4 will have detailed information on the toxicokinetics of poisons,
5 Bacterial toxins, animal toxins, mycotoxins and pesticides have knowledge about.

Course Content

Toxicology definition and importance, poison and poisoning concept, the poison of the access roads, mechanism of action, Pesticides, toxic gases and vapors, organic solvents, metallic poisons, radiation and radioisotopes, mycotoxins, food poisoning, bacterial toxins, plant toxins and animal poisons that course content constitute.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Toxicology, Toxicology Information About None
2) Definition and Classification of Toxicology None
3) toxication None
4) Mechanism of action of toxins I None
5) Mechanism of action of toxins II None
6) Toxicity Tests None
7) Food Sources of Toxic Substances I None
8) Food Sources of Toxic Substances II None
9) Contaminants I None
10) Contaminants II None
11) Food Additives I None
12) Food Additives II None
13) Chemical Preservatives in Food I None
14) Chemical Preservatives in Food II None

Sources

Course Notes / Textbooks: Altuğ, Tomris, 2003. Introduction to Toxicology and Food, CRC Press, New York, USA.
References: Vural N, Toksikoloji, Ankara Ü. Eczacılık Fak. Yay. No: 73, Ankara, 2005, 659 s.
Şanlı Y, Veteriner Klinik Toksikoloji, Medipres, Ankara, 2002, 808 s

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Midterms 1 % 40
Final 1 % 60
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Study Hours Out of Class 14 3 42
Quizzes 1 2 2
Midterms 1 1 1
Final 1 2 2
Total Workload 75

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Comprehend the conceptual importance of the game in the field of communication, ability to implement the player centered application to provide design.
2) Analyze, synthesize, and evaluate information and ideas from various perspectives.
3) Analyze the key elements that make up specific game genres, forms of interactions, mode of narratives and understand how they are employed effectively to create a successful game.
4) Understand game design theories and methods as well as implement them during game development; to make enjoyable, attractive, instructional and immersive according to the target audience.
5) Understand the technology and computational principles involved in developing games and master the use of game engines.
6) Understand the process of creation and use of 2D and 3D assets and animation for video games.
7) Understand and master the theories and methodologies of understanding and measuring player experience and utilize them during game development process.
8) Comprehend and master how ideas, concepts and topics are conveyed via games followed by the utilization of these aspects during the development process.
9) Manage the game design and development process employing complete documentation; following the full game production pipeline via documentation.
10) Understand and employ the structure and work modes of game development teams; comprehend the responsibilities of team members and collaborations between them while utilizing this knowledge in practice.
11) Understand the process of game publishing within industry standards besides development and utilize this knowledge practice.
12) Pitching a video game to developers, publishers, and players; mastering the art of effectively communicating and marketing the features and commercial potential of new ideas, concepts or games.