DIGITAL GAME DESIGN | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
BME1032 | Introduction to Biology | Spring | 3 | 0 | 3 | 6 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Assist. Prof. CANAN BAĞCI |
Recommended Optional Program Components: | None |
Course Objectives: | 1. Explain the steps in the scientific process and list the importance of biology in society and daily life. 2. Define the cell structure and function. 3. Describe the basic chemical structure of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), carbohydrates, lipids, and proteins. 4. Explain the role of DNA and RNA in transmitting information from genotype (DNA) to phenotype (protein) and deciphering the genetic code. 5. Defines the evolution and ecosystem. 6. Defines the formation of tissues and organ systems 7. Define the basic structure and function of each organ system 8. Define the basic biological processes of cancer 9. Define the basic concepts about genetics and inheritance |
The students who have succeeded in this course; Students who successfully complete this course are able to; 1. Explain the steps in the scientific process and list the importance of biology in society and daily life. 2. Define the cell structure and function. 3. Describe the basic chemical structure of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), carbohydrates, lipids, and proteins. 4. Explain the role of DNA and RNA in transmitting information from genotype (DNA) to phenotype (protein) and deciphering the genetic code. 5. Defines the evolution and ecosystem. 6. Defines the formation of tissues and organ systems 7. Define the basic structure and function of each organ system 8. Define the basic biological processes of cancer 9. Define the basic concepts about genetics and inheritance |
The course aims to focus on the understanding of biological concepts including different perspectives of scientific processes, cellular structure and functions, basic molecular and cellular pathways, relation of tissues and organ system, ecosystem, evolution, cancer and genetics. Teaching methods and techniques used in the course are lecture, reading, discussion and individual study. |
Week | Subject | Related Preparation |
1) | Introduction & Meeting | Lecture Notes |
2) | Human Biology, Science and Society | Lecture Notes |
3) | The Chemistry of Living Things | Lecture Notes |
4) | Overview, Structure and Function of Cells | Lecture Notes |
5) | DNA and Chromosomes | Lecture Notes |
6) | DNA Replication | Lecture Notes |
7) | Cell Reproduction and Differentiation | Lecture Notes |
8) | Cancer; Uncontrolled Cell Division and Differentiation | Lecture Notes |
9) | Genetics and Inheritance | Lecture Notes |
10) | Human Development | Lecture Notes |
11) | From Cells to Organ Systems | Lecture Notes |
12) | Stem Cells | Lecture Notes |
13) | DNA Technology and Genetic Engineering | Lecture Notes |
14) | Evolution, Ecosystems | Lecture Notes |
Course Notes / Textbooks: | Michael D. Johnson "Human Biology, Concepts and Current Issues" 8th edition, Pearson, 2017 |
References: |
Semester Requirements | Number of Activities | Level of Contribution |
Attendance | 14 | % 0 |
Quizzes | 2 | % 30 |
Midterms | 1 | % 30 |
Final | 1 | % 40 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 60 | |
PERCENTAGE OF FINAL WORK | % 40 | |
Total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 3 | 42 |
Study Hours Out of Class | 14 | 3 | 42 |
Quizzes | 4 | 1 | 4 |
Midterms | 1 | 2 | 2 |
Final | 1 | 2 | 2 |
Total Workload | 92 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Comprehend the conceptual importance of the game in the field of communication, ability to implement the player centered application to provide design. | |
2) | Analyze, synthesize, and evaluate information and ideas from various perspectives. | |
3) | Analyze the key elements that make up specific game genres, forms of interactions, mode of narratives and understand how they are employed effectively to create a successful game. | |
4) | Understand game design theories and methods as well as implement them during game development; to make enjoyable, attractive, instructional and immersive according to the target audience. | |
5) | Understand the technology and computational principles involved in developing games and master the use of game engines. | |
6) | Understand the process of creation and use of 2D and 3D assets and animation for video games. | |
7) | Understand and master the theories and methodologies of understanding and measuring player experience and utilize them during game development process. | |
8) | Comprehend and master how ideas, concepts and topics are conveyed via games followed by the utilization of these aspects during the development process. | |
9) | Manage the game design and development process employing complete documentation; following the full game production pipeline via documentation. | |
10) | Understand and employ the structure and work modes of game development teams; comprehend the responsibilities of team members and collaborations between them while utilizing this knowledge in practice. | |
11) | Understand the process of game publishing within industry standards besides development and utilize this knowledge practice. | |
12) | Pitching a video game to developers, publishers, and players; mastering the art of effectively communicating and marketing the features and commercial potential of new ideas, concepts or games. |