ADVERTISING | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
BNG5030 | Signals and Dynamic Systems | Spring | 3 | 0 | 3 | 12 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Prof. Dr. GÜLAY BULUT |
Recommended Optional Program Components: | None |
Course Objectives: | To build upon the essential concepts related to signals and dynamical systems by providing the underlying mathematical theory. |
The students who have succeeded in this course; Upon completion of the course, students will 1. have a through understanding of representation of signals in in time and frequency domains and their relations, 2. be able to obtain various mathematical models of dynamical systems from each other, 3. be able to apply mathematical tools to obtain response of dynamical systems to various inputs. |
Analysis of discrete-time and continuous-time signals through Fourier, Laplace and z-transforms. Mathematical modeling of discrete-time and continuous-time dynamical systems in time and frequency domains. Interconnections of dynamical systems. |
Week | Subject | Related Preparation |
1) | Representation of continuous-time and discrete-time signals. | |
2) | Fourier analysis of continuous-time signals | |
3) | Fourier analysis of discrete-time signals | |
4) | The Laplace transform | |
5) | The z-transform | |
6) | Time-domain modeling of continuous-time systems by differential equations. | |
7) | Frequency-domain modeling of continuous-time systems by Fourier and Laplace transforms. | |
8) | Response of continuous-time systems to specific inputs. | |
9) | Time-domain modeling of discrete-time systems by difference equations. | |
10) | Frequency-domain modeling of discrete-time systems by Fourier and z transforms. | |
11) | Response of discrete-time systems to specific inputs. | |
12) | Sampled-data systems. | |
13) | Interconnection of systems. | |
14) | Feedback systems. | |
15) | Review |
Course Notes / Textbooks: | |
References: | 1. M. C. K. Khoo: Physiological Control System, Wiley, 1999. 2. R.M. Rangayyan: Biomedical Signal Analysis: A Case-Study Approach, 2001. |
Semester Requirements | Number of Activities | Level of Contribution |
Application | 3 | % 15 |
Homework Assignments | 5 | % 15 |
Midterms | 1 | % 30 |
Final | 1 | % 40 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 60 | |
PERCENTAGE OF FINAL WORK | % 40 | |
Total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 3 | 14 | 42 |
Study Hours Out of Class | 15 | 7 | 105 |
Homework Assignments | 5 | 6 | 30 |
Midterms | 1 | 10 | 10 |
Final | 1 | 15 | 15 |
Total Workload | 202 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | To prepare students to become communication professionals by focusing on strategic thinking, professional writing, ethical practices, and the innovative use of both traditional and new media | 2 |
2) | To be able to explain and define problems related to the relationship between facts and phenomena in areas such as Advertising, Persuasive Communication, and Brand Management | |
3) | To critically discuss and interpret theories, concepts, methods, tools, and ideas in the field of advertising | |
4) | To be able to follow and interpret innovations in the field of advertising | |
5) | To demonstrate a scientific perspective in line with the topics they are curious about in the field. | |
6) | To address and solve the needs and problems of the field through the developed scientific perspective | |
7) | To recognize and understand all the dynamics within the field of advertising | |
8) | To analyze and develop solutions to problems encountered in the practical field of advertising |