DIGITAL GAME DESIGN | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
EDT5012 | Statistical Data Analysis | Spring | 3 | 0 | 3 | 8 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Prof. Dr. ALİ BAYKAL |
Course Lecturer(s): |
Prof. Dr. HASAN KEMAL SUHER Assoc. Prof. MEHMET SENCER ÇORLU Prof. Dr. ALİ BAYKAL Assist. Prof. GURSU ASIK |
Recommended Optional Program Components: | NONE |
Course Objectives: | This course will primarily focus on quantitative data analysis. Topics in this course will include descriptive statistics, hypothesis testing, sampling distributions, t-test, ANOVA, and regression. A parallel learning activity will be to learn how to use SPSS (Statistical Package for the Social Sciences) to run the above-mentioned statistical procedures. |
The students who have succeeded in this course; At the end of this course, students will; o Develop an understanding of the connection between quantitative research types and corresponding statistical analysis types. o Develop a knowledge base for basic statistical concepts, terms, and principles. o Develop knowledge of introductory level statistical methods. o Develop skills to perform statistical analysis for given research types. o Develop skills to use statistical software to analyze quantitative data. o Develop knowledge and skills to report quantitative data analysis results. |
Descriptive statistics; hypothesis testing; sampling distributions; t-test; ANOVA; regression; running these analyses in SPSS and interpreting the output; writing up quantitative data analysis results |
Week | Subject | Related Preparation |
1) | Introduction to statistical methods | NONE |
2) | Descriptive statistics | Ch. 1 and 2: Howell, D.C. (2007). Statistical methods for psychology (6th ed.).Belmont, CA: Thomson Wadsworth. Ch. 1, 2, and 3: Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage. |
3) | Descriptive statistics | Ch. 1 and 2: Howell, D.C. (2007). Statistical methods for psychology (6th ed.).Belmont, CA: Thomson Wadsworth. Ch. 1, 2, and 3: Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage. |
4) | Normal distribution | Ch. 3: Howell, D.C. (2007). Statistical methods for psychology (6th ed.).Belmont, CA: Thomson Wadsworth. Ch. 1, 2, and 3: Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage. |
5) | Normal distribution | Ch. 3: Howell, D.C. (2007). Statistical methods for psychology (6th ed.).Belmont, CA: Thomson Wadsworth. Ch. 1, 2, and 3: Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage. |
6) | Sampling distribution and basic hypothesis testing | Ch. 4: Howell, D.C. (2007). Statistical methods for psychology (6th ed.).Belmont, CA: Thomson Wadsworth. |
7) | Sampling distribution and basic hypothesis testing | Ch. 4: Howell, D.C. (2007). Statistical methods for psychology (6th ed.).Belmont, CA: Thomson Wadsworth. |
8) | Mean comparison of two groups | Ch. 7: Howell, D.C. (2007). Statistical methods for psychology (6th ed.).Belmont, CA: Thomson Wadsworth. Ch. 9: Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage. |
9) | Mean comparison of two groups | Ch. 7: Howell, D.C. (2007). Statistical methods for psychology (6th ed.).Belmont, CA: Thomson Wadsworth. Ch. 9: Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage. |
10) | Mean comparison of three or more groups | Ch. 11: Howell, D.C. (2007). Statistical methods for psychology (6th ed.).Belmont, CA: Thomson Wadsworth. Ch. 10: Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage. |
11) | Mean comparison of three or more groups | Ch. 11: Howell, D.C. (2007). Statistical methods for psychology (6th ed.).Belmont, CA: Thomson Wadsworth. Ch. 10: Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage. |
12) | Simple regression | Ch. 9 and 15: Howell, D.C. (2007). Statistical methods for psychology (6th ed.).Belmont, CA: Thomson Wadsworth. Ch. 7: Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage. |
13) | Simple regression | Ch. 9 and 15: Howell, D.C. (2007). Statistical methods for psychology (6th ed.).Belmont, CA: Thomson Wadsworth. Ch. 7: Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage. |
14) | Writing up data analysis results | NONE |
Course Notes / Textbooks: | Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage. Howell, D.C. (2007). Statistical methods for psychology (6th ed.).Belmont, CA: Thomson Wadsworth. |
References: | Cozby, P.C. (2007). Methods in behavioral research (9th ed.). Boston: McGraw Hill. Pedhazur, E.J. & Schmelkin, L.P. (1991). Measurement, design, and analysis: An integrated approach. Hillsdale, NJ: Lawrence Erlbaum Associates. Salkind, N.J. (2004). Statistics for people who (think they) hate statistics (2nd ed.). London: Sage. |
Semester Requirements | Number of Activities | Level of Contribution |
Attendance | 1 | % 20 |
Midterms | 2 | % 40 |
Final | 1 | % 40 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 60 | |
PERCENTAGE OF FINAL WORK | % 40 | |
Total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 3 | 42 |
Study Hours Out of Class | 14 | 7 | 98 |
Midterms | 2 | 15 | 30 |
Final | 1 | 20 | 20 |
Total Workload | 190 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Comprehend the conceptual importance of the game in the field of communication, ability to implement the player centered application to provide design. | |
2) | Analyze, synthesize, and evaluate information and ideas from various perspectives. | |
3) | Analyze the key elements that make up specific game genres, forms of interactions, mode of narratives and understand how they are employed effectively to create a successful game. | |
4) | Understand game design theories and methods as well as implement them during game development; to make enjoyable, attractive, instructional and immersive according to the target audience. | |
5) | Understand the technology and computational principles involved in developing games and master the use of game engines. | |
6) | Understand the process of creation and use of 2D and 3D assets and animation for video games. | |
7) | Understand and master the theories and methodologies of understanding and measuring player experience and utilize them during game development process. | |
8) | Comprehend and master how ideas, concepts and topics are conveyed via games followed by the utilization of these aspects during the development process. | |
9) | Manage the game design and development process employing complete documentation; following the full game production pipeline via documentation. | |
10) | Understand and employ the structure and work modes of game development teams; comprehend the responsibilities of team members and collaborations between them while utilizing this knowledge in practice. | |
11) | Understand the process of game publishing within industry standards besides development and utilize this knowledge practice. | |
12) | Pitching a video game to developers, publishers, and players; mastering the art of effectively communicating and marketing the features and commercial potential of new ideas, concepts or games. |