EDT5001 Educational Technology Field, Theory and ProfessionBahçeşehir UniversityDegree Programs DIGITAL GAME DESIGNGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
DIGITAL GAME DESIGN
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
EDT5001 Educational Technology Field, Theory and Profession Spring 3 0 3 8
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi YAVUZ SAMUR
Course Lecturer(s): Dr. Öğr. Üyesi YAVUZ SAMUR
Dr. Öğr. Üyesi ENİSA MEDE
Recommended Optional Program Components: None
Course Objectives: The course provides you with the foundational and working knowledge necessary to initiate steps toward becoming a professional in the field of educational technology. You will explore different aspects of the field, including the assets, opportunities and career paths in educational technology.

Learning Outcomes

The students who have succeeded in this course;
When successfully complete the course, students will be able to:
• describe the history and foundations of the field
• relate learning technologies to learning theories
• define educational technology and distinguish among its components and related fields (e.g., information technology, instructional design, knowledge representation, human performance technologies)
• initiate steps toward becoming a professional in the field of educational technology
• Discuss learner and learning environment characteristics and relate those with potential application of educational technologies
• Design a (for an information technology based lesson) storyboard for a given a set of learning problems, and discuss the components of the interface in relation to major learning theories.
• Construct arguments over technology use in solving a learning problem

Course Content

The evolution of technology; the concept of education; technology and education-society-economy relations; the relationship between education and informatics; educational technology as a discipline; theories, concepts and principles in educational technology; the historical development of educational technology and its future; learning theories applied to any learning issue and problem

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Schooling and technology
2) Education as system and place of educational technology as a component
3) Major learning theories and relations with educational technology
4) Technology applications in learning environments (i.e., conventional and emerging tools and mediums)
5) Technology applications in learning environments (i.e., tutorials, simulations, microworlds, ITSs)
6) Learning problems and learning environments
7) Learning environments and interaction design
8) Components of Instructional design
9) Instructional design models
10) Educational technology research examples_1
11) Educational technology research examples_2
12) Educational technology research examples_3
13) Creating technology based learning environments
14) Assesment and evaluation in technology based learning environments

Sources

Course Notes / Textbooks: -
References: -

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Project 2 % 50
Midterms 1 % 20
Final 1 % 30
Total % 100
PERCENTAGE OF SEMESTER WORK % 20
PERCENTAGE OF FINAL WORK % 80
Total % 100

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Comprehend the conceptual importance of the game in the field of communication, ability to implement the player centered application to provide design.
2) Analyze, synthesize, and evaluate information and ideas from various perspectives.
3) Analyze the key elements that make up specific game genres, forms of interactions, mode of narratives and understand how they are employed effectively to create a successful game.
4) Understand game design theories and methods as well as implement them during game development; to make enjoyable, attractive, instructional and immersive according to the target audience.
5) Understand the technology and computational principles involved in developing games and master the use of game engines.
6) Understand the process of creation and use of 2D and 3D assets and animation for video games.
7) Understand and master the theories and methodologies of understanding and measuring player experience and utilize them during game development process.
8) Comprehend and master how ideas, concepts and topics are conveyed via games followed by the utilization of these aspects during the development process.
9) Manage the game design and development process employing complete documentation; following the full game production pipeline via documentation.
10) Understand and employ the structure and work modes of game development teams; comprehend the responsibilities of team members and collaborations between them while utilizing this knowledge in practice.
11) Understand the process of game publishing within industry standards besides development and utilize this knowledge practice.
12) Pitching a video game to developers, publishers, and players; mastering the art of effectively communicating and marketing the features and commercial potential of new ideas, concepts or games.