BME3980 Information Technologies in MedicineBahçeşehir UniversityDegree Programs DIGITAL GAME DESIGNGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
DIGITAL GAME DESIGN
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME3980 Information Technologies in Medicine Spring 3 0 3 5
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. GÖKMEN ALTAY
Recommended Optional Program Components: None
Course Objectives: The course introduces basic aspects of medical applications of information technology. Some of the main topics of the course includes medical informatics, electronic health records, patient informatics and web services, online medical resources, search engines, mobile technology, evidence based medicine, examples of clinical practice guidelines, patient safety and technology, electronic prescribing, telemedicine, bioinformatics programs, public archiving , e-forms.

Learning Outcomes

The students who have succeeded in this course;
I. Identify available IT applications in medicines and their role in healthcare delivery.
II. Describe operating principles of IT in medicine.
III. Identify the business, clinical, and educational aspects of IT in medicine.
IV. Explain various techniques and technology employed for assessment in medicine.

Course Content

Overview of Medical Informatics
Electronic Health Records
Patient Informatics
Online Medical Resources
Use of Search Engines
Defines mobile technology
This lecture takes participants through the steps required for Clinical Practice Guidelines.
Patient Monitoring system
Review and Exam
This lecture provides Disease Registries examples
Provides the basics of Patient Safety and Technology.
Operation principles of Electronic Prescribing.
Defines telemedicine services and current applications.
Describes popular bioinformatics programs

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Overview of Medical Informatics
2) Electronic Health Records
3) Patient Informatics
4) Online Medical Resources
5) Use of Search Engines
6) Defines mobile technology
7) This lecture takes participants through the steps required for Clinical Practice Guidelines.
8) Patient Monitoring system
9) Review and Exam
10) This lecture provides Disease Registries examples
11) Provides the basics of Patient Safety and Technology.
12) Operation principles of Electronic Prescribing.
13) Defines telemedicine services and current applications.
14) Describes popular bioinformatics programs

Sources

Course Notes / Textbooks: Wootton, R., Craig, J, Patterson, V, Introduction to Telemedicine (2nd ed.), 2006
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 20
Midterms 1 % 30
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Study Hours Out of Class 14 42
Midterms 1 15
Final 1 25
Total Workload 124

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Comprehend the conceptual importance of the game in the field of communication, ability to implement the player centered application to provide design.
2) Analyze, synthesize, and evaluate information and ideas from various perspectives.
3) Analyze the key elements that make up specific game genres, forms of interactions, mode of narratives and understand how they are employed effectively to create a successful game.
4) Understand game design theories and methods as well as implement them during game development; to make enjoyable, attractive, instructional and immersive according to the target audience.
5) Understand the technology and computational principles involved in developing games and master the use of game engines.
6) Understand the process of creation and use of 2D and 3D assets and animation for video games.
7) Understand and master the theories and methodologies of understanding and measuring player experience and utilize them during game development process.
8) Comprehend and master how ideas, concepts and topics are conveyed via games followed by the utilization of these aspects during the development process.
9) Manage the game design and development process employing complete documentation; following the full game production pipeline via documentation.
10) Understand and employ the structure and work modes of game development teams; comprehend the responsibilities of team members and collaborations between them while utilizing this knowledge in practice.
11) Understand the process of game publishing within industry standards besides development and utilize this knowledge practice.
12) Pitching a video game to developers, publishers, and players; mastering the art of effectively communicating and marketing the features and commercial potential of new ideas, concepts or games.