BME2063 BiomaterialsBahçeşehir UniversityDegree Programs BUSINESS ADMINISTRATIONGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
BUSINESS ADMINISTRATION
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME2063 Biomaterials Spring
Fall
3 0 3 5
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi İREM DEMİRKAN
Course Lecturer(s): Dr. Öğr. Üyesi BURCU TUNÇ ÇAMLIBEL
Recommended Optional Program Components: None
Course Objectives: The goal of this course is,
- to teach what the field of biomaterials encompasses,
- to review principles from general chemistry,
- to teach the chemistry and engineering skills needed to solve challenges in the biomaterials and tissue engineering area
- to teach the types of biomaterials, the interactions between the body tissues and biocompatible materials, the production techniques, and the future trends

Learning Outcomes

The students who have succeeded in this course;
- The students who have succeeded in this course will;
1) Understand the fundamental properties of biomaterials and biocompatibility,
2) Understand different types of bonding and how these are oganized into material subunits for metal, ceramics and polymers,
3) Understand the molecular mechanisms behind the mechanical properies for each class of materials as well as the principles behind the events that stengthen and weaken biomaterials,
4) Understand the surface properties, toxicity and material characterization techniques,
5) Understand molecular mechanisms behind environmental degradation of metals, ceramics, and polymers in the human body.
6) Understand why the study of biomaterials is an important aspect of the educational background of the biomedical engineer, and be able to make research and present their studies related to biomaterials science.

Course Content

Basic concepts of biomaterials science, the structure of metals, ceramics, polymers and composite biomaterials, biocompatibility, corrosion and degradation of biomaterials, surface properties of biomaterials.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to basic concepts of biomaterials sciences and classes of materials used in medicine none
2) Atomic Structure and Interatomic Bonding None
3) The Structure of Crystalline Solids None
4) Imperfections in Solids, Diffusion None
5) Mechanical Properties of Metals None
6) Dislocations and Strengthening Mechanisms
7) Failure, Phase Diagrams None
8) Applications and Processing of Metal Alloys, Metallic Implant Materials None
9) Structure and Characteristics of Ceramics, Applications and Processing of Ceramic, Ceramic Implant Materials None
10) Polymer Structures, Characteristics, Applications and Processing, Polymeric Implant Materials None
11) Composites as Biomaterials None
12) Surface Properties of Biomaterials and Material Characterization Methods None
13) Corrosion and Degradation of Biomaterials, Electrical Properties, Magnetic Properties, Thermal Properties, Optical Properties None
14) Biocompatibility and biocompatibility Testing of Biomaterials

Sources

Course Notes / Textbooks: Biomaterials Science: An Introduction to Materials in medicine", Rattner BD, Hoffman AS, Schoen FJ, and Lemons JE, eds., 2nd ed., Elsevier Academic Press, San Diego, CA, 2004.



References: Biomaterials, an Introduction by Park and Lakes, Springer, Third ed., 2007
Biomaterials, The Intersection of Biology and Materials Science by Temenoff and Mikos, Pearson, 2008

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Project 1 % 30
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 30
PERCENTAGE OF FINAL WORK % 70
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 4 56
Presentations / Seminar 1 1 1
Project 1 27 27
Midterms 1 2 2
Final 1 2 2
Total Workload 130

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Being able to identify problems and ask right questions
2) Having problem solving skills and developing necessary analytical attitude
3) Comprehending theoretical arguments along with counter arguments in detail
4) Gaining awareness of lifelong learning and being qualified for pursuing graduate education
5) Applying theoretical concepts in project planning
6) Communicating efficiently by accepting differences and carrying out compatible teamwork
7) Increasing efficiency rate in business environment
8) Developing innovative and creative solutions in face of uncertainty
9) Researching to gather information for understanding current threats and opportunities in business
10) Being aware of the effects of globalization on society and business while deciding
11) Possessing digital competence and utilizing necessary technology
12) Communicating in at least one foreign language in academic and daily life
13) Possessing managing skills and competence
14) Deciding with the awareness of the legal and ethical consequences of business operations
15) Expressing opinions that are built through critical thinking process in business and academic environment