DIGITAL GAME DESIGN | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
BME1071 | Introduction to Biomedical Engineering | Spring | 2 | 2 | 3 | 6 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Dr. ENGİN BAYSOY |
Course Lecturer(s): |
Assist. Prof. HAKAN SOLMAZ |
Recommended Optional Program Components: | None |
Course Objectives: | The objectives of this course are; - To introduce students to the field of Biomedical Engineering (BME) with the excitement of this rapidly growing field - To communicate students to the academic preparation needed for successful study and professional careers in the different sub-disciplines of BME - To guide and advise students for their future plans and studies - Providing students with information and support for other engineering or life sciences programs or different sub-disciplines of BME |
The students who have succeeded in this course; Students who succeeded this course will; - Have basic knowledge about the applications of engineering principles in biomedical engineering - Know the definition of biomedical engineering and learn the areas of interest of biomedical engineers - Know the applications of basic sciences in physics, chemistry, biology and mathematics in the field of biomedical engineering - Know the definition and working fields of the clinical engineer - Know to make research for providing solutions and methods to solve basic problems and interpret the results. |
- Fundamentals of biomedical engineering, - To understand the relationship between biomedical engineering and clinical engineering, - Fundamentals of physics, biology, physiology, mechanics and electricity and electronics, - Fundamentals of biomedical instrumentation, - Biosensors and their working principles, - Optics and Photonics in medical applications, - Medical imaging modalities. |
Week | Subject | Related Preparation |
1) | Introduction to Biomedical Engineering | |
2) | Biomedical Equipment Technology | |
3) | Fundamentals of Physics in Biomedical Engineering | |
4) | Fundamentals of Mechanics in Biomedical Engineering | |
5) | Fundamentals of Biology in Biomedical Engineering | |
6) | Fundamentals of Human Physiology | |
7) | Electrical Fundamentals of Biomedical Engineering | |
8) | Midterm Exam | |
9) | Biological Signals | |
10) | Bioinstrumentation | |
11) | Biosensors | |
12) | Biomedical Optics | |
13) | Principles of Medical Imaging | |
14) | Clinical Engineering |
Course Notes / Textbooks: | Power Point slides will be available for student review. |
References: | 1. G.S. Sawhney, “Fundamentals Of Biomedical Engineering” ISBN (13) : 978-81-224-2549-9, (2007). 2. Joseph D. Bronzino, “The Biomedical Engineering Handbook Third Edition Medical Devices and Systems” (2006). 3. John G. Webster, "Medical Instrumentation, Application and Design" Fourth Edition, (2009) |
Semester Requirements | Number of Activities | Level of Contribution |
Quizzes | 1 | % 10 |
Homework Assignments | 1 | % 10 |
Project | 1 | % 15 |
Midterms | 1 | % 25 |
Final | 1 | % 40 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 45 | |
PERCENTAGE OF FINAL WORK | % 55 | |
Total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 3 | 42 |
Study Hours Out of Class | 14 | 7 | 98 |
Midterms | 1 | 2 | 2 |
Final | 1 | 2 | 2 |
Total Workload | 144 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Comprehend the conceptual importance of the game in the field of communication, ability to implement the player centered application to provide design. | |
2) | Analyze, synthesize, and evaluate information and ideas from various perspectives. | |
3) | Analyze the key elements that make up specific game genres, forms of interactions, mode of narratives and understand how they are employed effectively to create a successful game. | |
4) | Understand game design theories and methods as well as implement them during game development; to make enjoyable, attractive, instructional and immersive according to the target audience. | |
5) | Understand the technology and computational principles involved in developing games and master the use of game engines. | |
6) | Understand the process of creation and use of 2D and 3D assets and animation for video games. | |
7) | Understand and master the theories and methodologies of understanding and measuring player experience and utilize them during game development process. | |
8) | Comprehend and master how ideas, concepts and topics are conveyed via games followed by the utilization of these aspects during the development process. | |
9) | Manage the game design and development process employing complete documentation; following the full game production pipeline via documentation. | |
10) | Understand and employ the structure and work modes of game development teams; comprehend the responsibilities of team members and collaborations between them while utilizing this knowledge in practice. | |
11) | Understand the process of game publishing within industry standards besides development and utilize this knowledge practice. | |
12) | Pitching a video game to developers, publishers, and players; mastering the art of effectively communicating and marketing the features and commercial potential of new ideas, concepts or games. |