MAT4053 Differentiable ManifoldsBahçeşehir UniversityDegree Programs MECHATRONICS (TURKISH)General Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MECHATRONICS (TURKISH)
Associate TR-NQF-HE: Level 5 QF-EHEA: Short Cycle EQF-LLL: Level 5

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MAT4053 Differentiable Manifolds Spring
Fall
3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Associate (Short Cycle)
Mode of Delivery: Face to face
Course Coordinator :
Recommended Optional Program Components: None
Course Objectives: The differentiable manifolds course aims to give the fundamental knowledge for the studies of graduate students who intends to study at geometry.

Learning Outcomes

The students who have succeeded in this course;
upon succeeding this course
1)be able to test a differentiable structure given on a set
2)be able to give examples of Differentiable structures on a set
3) be able to check differentiablity of a function
4) be able to solve problems involving the derived map of a transformation between two manifolds
5) be able to use the properties of induced topology on a manifold,
6) be able to coordinatize Grassmann manifolds and can evaluate their dimensions,
7) be able to understand the existence problems by using the unity of partition
8)be able to explain the derived function of a function by using the Leibniz rule,
9) be able to explain submanifolds as images under Immersions
10) be able to coordinatize quotient manifolds and calculate their dimensions,
11) be able to construct Klein bottle and Mobius strip as an example of a quotient manifold

Course Content

Differentiable (diff.able) functions, Atlas, diff.able structures on a set, Examples of diff.able structures, diff.able manifolds, diff.able functions, The induced topology on a manifold, diff.able varieties, Grassmann manifolds, Manifold structure on a topological space, properties of the induced topology, Topological restrictions on a manifold, Partitions of unity, Partial differentiation, tangent vectors, The invers function Theorem, Leibniz's rule. İmmersions, submanifolds, regular submanifolds, some topological properties of submanifolds. Submersions, The fibres of submersions, Quotient manifolds, Transformation groups, Examples of quotient manifolds.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Preliminaires
2) Some classical theory of differentiable functions
3) Atlas, differentiable structures on a set
4) Examples of differentiable structures on a set
5) Differentiable manifolds
6) Differentiable functions
7) The induced topology on a manifold
8) Differentiable varieties, Grassmann manifolds
9) Topological restrictions on a manifold, Partitions of unity
10) Manifold structure on a topological space, properties of the induced topology
11) Partial differentiation, tangent vectors, derived linear functions, The invers function Theorem, Leibniz's rule.
12) İmmersions, submanifolds, regular submanifolds, some topological properties of submanifolds.
13) Submersions, The fibres of submersions, Quotient manifolds
14) Transformation groups, Examples of quotient manifolds.

Sources

Course Notes / Textbooks: Differentiable Manifolds an Introduction ,F Brickell, R. S. Clark.
References: .

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Midterms 2 % 45
Final 1 % 55
Total % 100
PERCENTAGE OF SEMESTER WORK % 45
PERCENTAGE OF FINAL WORK % 55
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 7 2 14
Midterms 2 20 40
Final 1 30 30
Total Workload 126

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To improve fundamental computer knowledge, to encourage students using office and package programs.
2) Ability to have and use of fundamental mathematics knowledge and skills the usage of relevant materials.
3) Ability to recognize general structures of machine equipments and the features of shaping
4) Ability to grasp manufacturing processes and cutting tool materials, materials, statics, mechanics and fluid science fundemantal knowledge.
5) Ability to draw assembly and auxilary devices as well as to draw whole or details of a system.
6) Ability to have a knowledge of fundemantal manufacturing process such as turning, milling, punching,grinding and welding techniques and to have a self esteem in order to work behind the bench.
7) Ability to do computer aided design and write program on digital benches.
8) Ability to prepare project report, follow up project process and implement projects.
9) ability to learn the areas of usage of electronic circuit components. Ability to grasp and write programs for micro controllers and for their components. Ability to design relevant circuits.
10) Ability to understand the electric motors principles and AC-DC analysis
11) Ability to gain a dominaion on visual programming
12) Having the ability to communicate efficiently in verbal and written Turkish, to know at least one foreign language in order to communicate with the colleagues and customers.