ENVIRONMENTAL ENGINEERING | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
PHY2003 | Modern Physics | Spring | 3 | 0 | 3 | 4 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Assoc. Prof. MUHAMMED AÇIKGÖZ |
Recommended Optional Program Components: | None |
Course Objectives: | To introduce the fundamentals of relativity, Quantum physics, atomic physics and nuclear physics. |
The students who have succeeded in this course; The students who succeeded in this course; will be able to understand the special theory of relativity. will be able to formulate the Lorentz transformation equations. will be able to formulate relativistic linear momentum and energy. will be able to discriminate Quantum physics from classical physics. will be able to formulate wave mechanics. will be able to apply Schrödinger equation to some applications. will be able to learn the elementary concepts of Quantum physics. will be able to define hydrogen atom concept in Quantum physics. will be able to apply quantum theory to nuclear structure. will be able to discriminate nuclear reactions; fission and fusion. will be able to apply quantum theory to nuclear reactions. will be able to apply quantum theory to elementary particles and their interactions. |
In this course theory of relativity; the Lorentz transformation equations; basics of Quantum mechanics; Schrödinger equation; principles of the atomic physics and nuclear physics will be taught. |
Week | Subject | Related Preparation |
1) | Introduction to Modern Physics, and Theory of Relativity. | |
2) | Theory of Relativity. | |
3) | Quantum Theory of Light; Introduction to the theory and results of waves. | |
4) | Quantum Physics; The beginnings of quantum theory | |
5) | Quantum Physics; A basic introduction to quantum mechanics and wave mechanics. | |
6) | Quantum Physics; probabilities and normalization; SHO | |
7) | Schrödinger Equation and Quantum Mechanics | |
8) | Atomic Physics; atomic structure | |
9) | Atomic Physics; molecular structure | |
10) | Nuclear Physics; Nuclear structure and Nuclear binding energy, nuclear force, radioactivity | |
11) | Nuclear Physics applications; Nuclear reactions; fission and fusion; Radiation detectors and applications | |
12) | Selected Topics | |
13) | Selected Topics | |
14) | Selected Topics |
Course Notes / Textbooks: | 1) Physics for Scientists and Engineers, eighth editions (2010) by John W. Jewett, Jr. and Raymond A. SERWAY, BROOKS/COLE CENGACE learning. 2) Physics for Scientists and Engineers with Modern Physics, sixth editions (2006) by Raymond A. SERWAY and John W. Jewett, Jr., Brooks/Cole- Thomson Learning. |
References: | 1) Physics, Principles with applications, 5th edition (1998) by Douglas C. GIANCOLI, Prentice Hall, Upper Saddle River, New Jersey 07458 2) Fundamentals of Physics, 5th edition (1997) by David HALLIDAY, Robert RESNICK and Jearl WALKER, John Wiley &Sons. Inc. New York. |
Semester Requirements | Number of Activities | Level of Contribution |
Quizzes | 2 | % 10 |
Midterms | 1 | % 40 |
Final | 1 | % 50 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 50 | |
PERCENTAGE OF FINAL WORK | % 50 | |
Total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 3 | 42 |
Study Hours Out of Class | 14 | 2 | 28 |
Midterms | 1 | 14 | 14 |
Final | 1 | 16 | 16 |
Total Workload | 100 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | A broad education and knowledge of contemporary issues necessary to understand the impact of environmental engineering solutions in a global, societal, and environmental context. | |
2) | An ability to solve environmental engineering problems and to evaluate environmental systems in practice by applying fundamental knowledge of biology, chemistry, physics, mathematics, statistics, and engineering principles by using modern engineering techniques, skills, and tools. | |
3) | An ability to identify, formulate, and solve environmental engineering problems, particularly the planning, integrated design, implementation, and operation of engineered and natural systems, components, or processes that meet specified performance, cost, time, safety and quality needs, and objectives. | |
4) | An ability to design and conduct experiments, to analyze and interpret data in air, water, and land systems, and to assess impacts on environmental health. | |
5) | An ability to convey technical material through oral presentations and written papers/reports and to communicate using technical drawing. | |
6) | Equipped with the modern research tools, an ability to reach information through searches of databases, libraries and other resources. | |
7) | An ability to use software required for the field of environmental engineering along with information and communication technologies at the European Computer Driving License Advanced Program level. | |
8) | An ability to perform individually and to function within multidisciplinary teams while using English at the European Language Portfolio B1 level. | |
9) | An understanding of professional, societal, and ethical responsibilities | |
10) | Recognition for concepts of entrepreneurship and innovation in environmental engineering. | |
11) | An ability to engage in life-long learning. | |
12) | An understanding of the role and responsibilities of public institutions and private organizations functioning in the field of environmental engineering. |