CIVIL ENGINEERING | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
PHY1002 | Physics II | Spring | 3 | 2 | 4 | 7 |
Language of instruction: | English |
Type of course: | Must Course |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | Prof. Dr. LÜTFİ ARDA |
Course Lecturer(s): |
Assist. Prof. ÖMER POLAT Prof. Dr. LÜTFİ ARDA Assist. Prof. DOĞAN AKCAN RA MEHMET CAN ALPHAN RA MUHAMMED CEMAL DEMİR Assoc. Prof. OZAN AKDOĞAN Prof. Dr. NAFİZ ARICA |
Recommended Optional Program Components: | None |
Course Objectives: | To introduce the fundamentals of electrostatics and magnetostatics. |
The students who have succeeded in this course; 1 will be able to describe properties of charged particles formulate the electric force between charged particles, apply vector notation to the concept of electric fields, calculate electric field due to continous charge distribution, draw electric field lines of a charged distribution. 2 will be able to describe electric flux, apply Gauss’s Law to continuous charge distribution, describe conductors in electrostatic equilibrium. 3 will be able to formulate the electric potential of point charges and continuous charge distributions, formulate the relation between electric field and electric potential, calculate electric potential due to continous charge distribution. 4 will be able to calculate the capacitance of different capacitor combinations. 5 will be able to describe and calculate resistance, current and voltage. 6 will be able to analysis DC circuits, apply Kirchhoffs Rules to DC Electric Circuits. |
In this course Electric Field, Gauss’s Law, Electric Potential, Capacitance and Dielectrics, Direct Current Circuits, and magnetic fields will be taught. |
Week | Subject | Related Preparation |
1) | Electric Fields, Ch. 23, Properties of Electric Charges, Insulator and Conductors, Coulomb`s Law, The Electric Field | |
2) | Electric Fields, Ch. 23, Electric Field of a Continuous Charge Distribution, Electric Field Lines, Motion of Charged Particles in a Uniform Electric Field. | |
3) | Gauss`s Law, Ch. 24, Electric Flux, Gauss, s Law, Application of Gauss`s Law to Charged Insulator. | |
4) | Gauss`s Law, Ch. 24, Conductors in Electrostatic Equilibrium, Experimental verification of Gauss`s Law. | |
5) | Electric Potential, Ch 25, Potential Difference and Electric Potential, Potential Differences in a Uniform Electric Field | |
6) | Electric Potential, Ch 25, Electric Potential and Potential Energy Due to Point Charges, Obtaining the Value of the Electric Field From the Electric Potential. | |
7) | Electric Potential, Ch 25, Electric Potential Due to Continuous Charge Distributions, Electric Potential Due to a Charged Conductor, The Millikan Oil-Drop Experiment, Applications of Electro Statics. | |
8) | Capacitance and Dielectrics Ch 26, Definition of Capacitance, Calculating Capacitance, Combination of Capacitors | |
9) | Capacitance and Dielectrics Ch 26, Energy Stored in a Capacitors with Dielectrics, Electric Dipole in an Electric Field | |
10) | Capacitance and Dielectrics Ch 26, An Atomic Description of Dielectrics. | |
11) | Current and Resistance Ch 27, Electric Current, Resistance and Ohm`s Law, | |
12) | A Model For Electric Conduction.Resistance and Temperature, Superconductors, Electric Energy and Power. | |
13) | Direct Current Circuits, Ch 28, Electromotive Force, Resistors in Series and in Parallel. | |
14) | Kirchhoff`s Rules, RC Circuits. charging a capacitor, discharging a capacitor, the galvanometer, the ammeter, the voltmeter. |
Course Notes / Textbooks: | 1) Physics for Scientists and Engineers, 9th Edition (2014) by John W. Jewett, Jr. and Raymond A. SERWAY, BROOKS/COLE CENGACE learning. 2) Young & Freedman’s University Physics 14th edition |
References: | 1) Physics for Scientists and Engineers, eighth editions (2010) by John W. Jewett, Jr. and Raymond A. SERWAY, BROOKS/COLE CENGACE learning. 2) Physics for Scientists and Engineers with Modern Physics, sixth editions (2006) by Raymond A. SERWAY and John W. Jewett, Jr., Brooks/Cole- Thomson Learning. |
Semester Requirements | Number of Activities | Level of Contribution |
Laboratory | 7 | % 15 |
Quizzes | 5 | % 20 |
Midterms | 1 | % 20 |
Final | 1 | % 45 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 55 | |
PERCENTAGE OF FINAL WORK | % 45 | |
Total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 4 | 56 |
Laboratory | 7 | 3 | 21 |
Study Hours Out of Class | 14 | 6 | 84 |
Quizzes | 5 | 1 | 5 |
Midterms | 1 | 2 | 2 |
Final | 1 | 2 | 2 |
Total Workload | 170 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Adequate knowledge in mathematics, science and civil engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems. | 5 |
2) | Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose. | 2 |
3) | Ability to design a complex system, process, structural and/or structural members to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose. | |
4) | Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in civil engineering applications; ability to use civil engineering technologies effectively. | |
5) | Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or civil engineering research topics. | 5 |
6) | Ability to work effectively within and multi-disciplinary teams; individual study skills. | 4 |
7) | Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing. | |
8) | Awareness of the necessity of lifelong learning; ability to access information to follow developments in civil engineering technology. | |
9) | To act in accordance with ethical principles, professional and ethical responsibility; having awareness of the importance of employee workplace health and safety. | |
10) | Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development. | |
11) | Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of civil engineering solutions. |