ESE4101 Sustainable EnergyBahçeşehir UniversityDegree Programs MATHEMATICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MATHEMATICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
ESE4101 Sustainable Energy Spring 2 0 2 4
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ÖZCAN HÜSEYİN GÜNHAN
Course Lecturer(s): Dr. Öğr. Üyesi CANAN ACAR
Recommended Optional Program Components: Not available.
Course Objectives: The objectives of the course is to teach the students the tradeoffs inherent in sustainability; to lead them to learn technology and technology dependent energy policy options and provide an assessment frame work to produce alternative solutions. In this respect, the conventional and renewable energy resources and the existing and future’s technologies will be examined in relation to their environmental strengths and weaknesses, their economic viability and their ability to satisfy the ever evolving regulatory expectations of the world community

Learning Outcomes

The students who have succeeded in this course;
I. Understand the pillars on which sustainability stands and the importance of energy as one of the pillars
II. Identify the differences between different energy resources as far as sustainability is considered
III. Comprehend the local regional and global effects of energy production and consumption.
IV. Know the economic evaluations pertaining to energy and the rest of the economy
V. Understands various sustainability indicators and the sustainability metrics
VI. Differentiate between various fossil fuels and their contribution to human processes.
VII. Knows the issues related to fossil fuels from exploration , discovery , extraction to final use.
VIII. Comprehend and analyze the environmental impacts of fossil fuels.
IX. Differentiate between various new and renewable energy sources and their contribution to human processes

Course Content

Wide aspects of energy use from the viewpoints of sustainability, resource availability, technical performance, environmental effects, and economics. The course shows the tools to make “informed energy choices” and review the technology, environmental impacts and economics of main energy sources like nuclear, solar, wind, geothermal energies and hydropower. Covers the relationships between the development of technology, energy resources, and energy technologies available today.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Sustainable Energy
2) Energy Resources
3) Homework 1, in-class presentation
4) Local, Regional and Global Environmental Effects of Energy Production and Consumption
5) Economic Evaluation
6) Energy Systems and Sustainability Metrics
7) Homework 2, in-class presentations
8) Fossil Fuels and Fossil Energy
9) Midterm Examination
10) Environmental Impacts of Fossil Fuels and Fossil Energy
11) Nuclear power
12) Homework 3, in-class presentation
13) New and Renewable Energy Sources in Context
14) Complexity of the Energy Systems
15) Studying for the final examinations
16) Studying for the final examinations

Sources

Course Notes / Textbooks: Ders notları/pp sunumları
Referans kitap: J. W. Tester, E. M. Drake, M. W. Golay, M. J. Driscoll, and W. A. Peters ,“Sustainable Energy- Choosing Among Options”,1995

Lecture Notes and pp presentations
Reference(s): J. W. Tester, E. M. Drake, M. W. Golay, M. J. Driscoll, and W. A. Peters ,“Sustainable Energy- Choosing Among Options”,1995
References: Makaleler ders sırasında bildirilecektir.
Papers to be announced later.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Project 1 % 25
Midterms 1 % 30
Final 1 % 45
Total % 100
PERCENTAGE OF SEMESTER WORK % 30
PERCENTAGE OF FINAL WORK % 70
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Study Hours Out of Class 16 3 48
Presentations / Seminar 2 2 4
Project 1 20 20
Midterms 1 2 2
Final 1 2 2
Total Workload 104

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To have a grasp of basic mathematics, applied mathematics and theories and applications in Mathematics
2) To be able to understand and assess mathematical proofs and construct appropriate proofs of their own and also define and analyze problems and to find solutions based on scientific methods,
3) To be able to apply mathematics in real life with interdisciplinary approach and to discover their potentials,
4) To be able to acquire necessary information and to make modeling in any field that mathematics is used and to improve herself/himself, 4
5) To be able to tell theoretical and technical information easily to both experts in detail and non-experts in basic and comprehensible way,
6) To be familiar with computer programs used in the fields of mathematics and to be able to use at least one of them effectively at the European Computer Driving Licence Advanced Level,
7) To be able to behave in accordance with social, scientific and ethical values in each step of the projects involved and to be able to introduce and apply projects in terms of civic engagement,
8) To be able to evaluate all processes effectively and to have enough awareness about quality management by being conscious and having intellectual background in the universal sense, 4
9) By having a way of abstract thinking, to be able to connect concrete events and to transfer solutions, to be able to design experiments, collect data, and analyze results by scientific methods and to interfere,
10) To be able to continue lifelong learning by renewing the knowledge, the abilities and the competencies which have been developed during the program, and being conscious about lifelong learning,
11) To be able to adapt and transfer the knowledge gained in the areas of mathematics ; such as algebra, analysis, number theory, mathematical logic, geometry and topology to the level of secondary school,
12) To be able to conduct a research either as an individual or as a team member, and to be effective in each related step of the project, to take role in the decision process, to plan and manage the project by using time effectively.