SEN4406 Advances in Web ProgrammingBahçeşehir UniversityDegree Programs MOLECULAR BIOLOGY AND GENETICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MOLECULAR BIOLOGY AND GENETICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
SEN4406 Advances in Web Programming Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi TAMER UÇAR
Course Lecturer(s): Dr. Öğr. Üyesi TAMER UÇAR
Recommended Optional Program Components: None
Course Objectives: The course covers JSF Basics, namespaces, document type definitions, Cascading Style Sheets, JSF expressions, XML stylesheets, language transformations, JSF navigation model and component development.

Learning Outcomes

The students who have succeeded in this course;
1. Analyze JSF and request processing
2. Analyze Facelets view declaration
3. Describe managed beans and expression language
4. Describe navigation model
5. Define user interface component model
6. Analyze data conversion, validation and event model
7. Analyze custom UI component development and Ajax interactions
8. Analyze non-UI custom component development
9. Describe secure development using JSF

Course Content

The course content is composed of the basics of JavaServer Faces (JSF), the jsf request processing lifecycle, the facelets view declaration language, managed beans and the jsf expression language, the navigation model, the user interface component model, converting and validating data, the jsf event model, building custom ui components, jsf and ajax, building non-ui custom components, securing javaserver faces applications.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to JavaServer Faces (JSF) architecture.
2) Analyzing the JSF request processing lifecycle
3) Introduction to the Facelets View Declaration Language
4) Exploring Managed Beans and the JSF Expression Language.
5) Exploring the Navigation Model.
6) Analyzing the User Interface Component Model.
7) Converting and Validating Data in JSF.
8) JSF / Midterm I
9) Exploring the JSF Event Model.
10) Building custom UI components in JSF.
11) Using Ajax in JSF.
12) Using Ajax in JSF / Midterm II
13) Building non-UI custom components in JSF.
14) Securing JavaServer Faces applications.

Sources

Course Notes / Textbooks: Will be given weekly.
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 5 % 10
Homework Assignments 2 % 10
Midterms 2 % 40
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 3 3 9
Homework Assignments 2 2 4
Quizzes 5 2 10
Midterms 2 15 30
Final 1 20 20
Total Workload 115

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Utilize the wealth of information stored in computer databases to answer basic biological questions and solve problems such as diagnosis and treatment of diseases. 3
2) Acquire an ability to compile and analyze biological information, clearly present and discuss the conclusions, the inferred knowledge and the arguments behind them both in oral and written format. 4
3) Develop critical, creative and analytical thinking skills. 5
4) Develop effective communication skills and have competence in scientific speaking, reading and writing abilities in English and Turkish. 3
5) Gain knowledge of different techniques and methods used in genetics and acquire the relevant laboratory skills. 4
6) Detect biological problems, learn to make hypothesis and solve the hypothesis by using variety of experimental and observational methods. 4
7) Gain knowledge of methods for collecting quantitative and qualitative data and obtain the related skills. 3
8) Conduct research through paying attention to ethics, human values and rights. Pay special attention to confidentiality of information while working with human subjects. 5
9) Obtain basic concepts used in theory and practices of molecular biology and genetics and establish associations between them. 4
10) Search and use literature to improve himself/herself and follow recent developments in science and technology. 5
11) Be aware of the national and international problems in the field and search for solutions. 4