CMP4336 Introduction to Data MiningBahçeşehir UniversityDegree Programs MOLECULAR BIOLOGY AND GENETICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MOLECULAR BIOLOGY AND GENETICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CMP4336 Introduction to Data Mining Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi CEMAL OKAN ŞAKAR
Recommended Optional Program Components: None
Course Objectives: In this course, data mining algorithms and computational paradigms that are used to extract useful knowledge, extract patterns and regularities in databases, and perform prediction and forecasting will be discussed. Supervised and unsupervised learning approaches will be covered with a focus on pattern discovery and cluster analysis.

Learning Outcomes

The students who have succeeded in this course;
1. Be able to understand Data Gathering and Pre-processing
2. Become familiar with Frequent Item Set Detection
3. Be able to understand Association Rule Mining
4. Be able to understand Classifiers, and their benefits
5. Be able to use Clustering
6. Be able to understand Clustering Evaluation

Course Content

1.Introduction to Basic Concepts
2.Data Exploration
3.Classification
4.Clustering
5.Dimensionality Reduction
6.Frequent Item Set Mining
7.Association Rule Mining

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Basic Concepts None
2) Data Exploration: Summary Statistics, Visualization, OLAP and Multi-dimensional Data Analysis None
3) Data Pre-Processing, Transformation, Normalization, Standardization None
4) Classification and Regression: Model Selection and Generalization, Decision Trees, Performance Evaluation None
5) Classification: Bayesian Decision Theory, Parametric Classification, Naive Bayes Classifier, Instance-Based Classifiers
6) Classification None
6) Classification and Regression: Artificial Neural Networks, Support Vector Machines
7) Midterm I Review of all topics covered so far
8) Clustering: Partitioning and Hierarchical Algorithms None
9) Clustering: Density-Based Algorithms
10) Cluster Evaluation, Comparing Clusterings None
11) Midterm II none
12) Dimensionality Reduction none
13) Frequent Item Set Mining none
14) Association Rule Mining none

Sources

Course Notes / Textbooks: Introduction to Data Mining by Pang-Ning Tan, Michael Steinbach and Vipin Kumar
References: Data Mining: Concepts and Techniques, by Jiawei Han, Micheline Kamber and Jian Pei

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 2 % 20
Project 1 % 20
Midterms 2 % 20
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Study Hours Out of Class 16 32
Project 5 15
Homework Assignments 6 12
Midterms 8 28
Final 6 26
Total Workload 155

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Utilize the wealth of information stored in computer databases to answer basic biological questions and solve problems such as diagnosis and treatment of diseases. 3
2) Acquire an ability to compile and analyze biological information, clearly present and discuss the conclusions, the inferred knowledge and the arguments behind them both in oral and written format. 4
3) Develop critical, creative and analytical thinking skills. 5
4) Develop effective communication skills and have competence in scientific speaking, reading and writing abilities in English and Turkish. 3
5) Gain knowledge of different techniques and methods used in genetics and acquire the relevant laboratory skills. 4
6) Detect biological problems, learn to make hypothesis and solve the hypothesis by using variety of experimental and observational methods. 4
7) Gain knowledge of methods for collecting quantitative and qualitative data and obtain the related skills. 3
8) Conduct research through paying attention to ethics, human values and rights. Pay special attention to confidentiality of information while working with human subjects. 5
9) Obtain basic concepts used in theory and practices of molecular biology and genetics and establish associations between them. 4
10) Search and use literature to improve himself/herself and follow recent developments in science and technology. 5
11) Be aware of the national and international problems in the field and search for solutions. 4