CMP3001 Operating SystemsBahçeşehir UniversityDegree Programs MOLECULAR BIOLOGY AND GENETICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MOLECULAR BIOLOGY AND GENETICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CMP3001 Operating Systems Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi TARKAN AYDIN
Course Lecturer(s): Dr. Öğr. Üyesi TARKAN AYDIN
Recommended Optional Program Components: None
Course Objectives: This course is a core course on one of the pillars of computer systems: Operating Systems (OS). The course will make the student appreciate things he takes for granted such as process management, file systems, and so on. It will also help him/her make an entry into the domains of efficient use of OSes and OS design.

Learning Outcomes

The students who have succeeded in this course;
1. Be able to understand importance of Operating System as a resource management tool
2. Become familiar with the mechanics of processes and threads
3. Be able to understand memory management details of OS
4. Be able to understand file systems
5. Be able to use input and output
6. Be able to understand deadlocks, and avoiding deadlocks

Course Content

1.History of Operating Systems, Introduction to Operating Systems
2.Processes and Threads
3.Memory Management
4.File Systems
5.Input Output
6.Deadlocks

Weekly Detailed Course Contents

Week Subject Related Preparation
1) History of Operating Systems, Introduction to Operating Systems None
2) Processes and Threads None
3) Processes and Threads (cont.) None
4) Memory Management None
5) Midterm 1 Study all the topics covered so far
6) Memory Management (cont) None
7) Memory Management (cont) None
8) File Systems (cont) None
9) File Systems None
10) Midterm 2 Study all the topics covered so far
11) Input Output None
12) Input Output (cont) None
13) Deadlocks None
14) Deadlocks None

Sources

Course Notes / Textbooks: Operating System Concepts
Abraham Silberschatz (Author), Peter B. Galvin (Author), Greg Gagne (Author)
References: Andrew S. Tanenbaum, Modern Operating Systems, (3rd Edition), 2007, Prentice Hall

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 8 % 20
Project 1 % 10
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 2 28
Project 1 10 10
Quizzes 8 1 8
Midterms 1 25 25
Final 1 35 35
Total Workload 148

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Utilize the wealth of information stored in computer databases to answer basic biological questions and solve problems such as diagnosis and treatment of diseases. 3
2) Acquire an ability to compile and analyze biological information, clearly present and discuss the conclusions, the inferred knowledge and the arguments behind them both in oral and written format. 4
3) Develop critical, creative and analytical thinking skills. 5
4) Develop effective communication skills and have competence in scientific speaking, reading and writing abilities in English and Turkish. 3
5) Gain knowledge of different techniques and methods used in genetics and acquire the relevant laboratory skills. 4
6) Detect biological problems, learn to make hypothesis and solve the hypothesis by using variety of experimental and observational methods. 4
7) Gain knowledge of methods for collecting quantitative and qualitative data and obtain the related skills. 3
8) Conduct research through paying attention to ethics, human values and rights. Pay special attention to confidentiality of information while working with human subjects. 5
9) Obtain basic concepts used in theory and practices of molecular biology and genetics and establish associations between them. 4
10) Search and use literature to improve himself/herself and follow recent developments in science and technology. 5
11) Be aware of the national and international problems in the field and search for solutions. 4