EEE5601 Digital CommunicationBahçeşehir UniversityDegree Programs CIVIL ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
CIVIL ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
EEE5601 Digital Communication Spring 3 0 3 12
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. SAEID KARAMZADEH
Recommended Optional Program Components: None
Course Objectives: AWGN kanal için bazı modülasyon/demodülasyon tekniklerini, temel sezim kuramını ve performans analizinin metodlarını detaylarıyla anlamak.

Learning Outcomes

The students who have succeeded in this course;
1. Describe digital communications,

2. Explain signal space representation,

3. Describe digital modulation schemes,

4. Gain knowledge noise calculations,

5. Understand single-user detection theory.

Course Content

This course starts with reviewing concepts of sampling, quantization and encoding. Then, it moves to source and channel coding, signal space representation, and digital modulation schemes. Upon visiting digital demodulation schemes, performance analysis of different schemes are carried out. In the second half of the course, basic estimation and detection techniques are introduced. Finally, the course ends with fading channel analysis.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) General model for a digital communication system
2) Source and channel coding
3) Signal Space Representation
4) Digital modulation schemes, M-QAM
5) Performance considerations, Bandwidth considerations, Practical considerations
6) (Phase) noncoherent detection principles
7) Differential detection, System constraints and trade-offs
8) Comparison and discussion of previously mentioned methods. Midterm exam.
9) General Concepts of Detection Theory, Bayesian Decision Theory
10) The Likelihood Ratio Test and Its applications
11) Optimal binary detection for the Gaussian vector channel
12) Optimal detection for M-ary hypothesis tests
13) BER calculations
14) Introduction to fading channels

Sources

Course Notes / Textbooks: Proakis, Digital Communications, Fourth Edition, McGraw Hill
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Project 1 % 30
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 30
PERCENTAGE OF FINAL WORK % 70
Total % 100

ECTS / Workload Table

Activities Number of Activities Workload
Course Hours 14 42
Project 4 50
Midterms 9 60
Final 4 48
Total Workload 200

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and civil engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3) Ability to design a complex system, process, structural and/or structural members to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in civil engineering applications; ability to use civil engineering technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or civil engineering research topics.
6) Ability to work effectively within and multi-disciplinary teams; individual study skills.
7) Ability to communicate effectively in English and Turkish (if he/she is a Turkish citizen), both orally and in writing.
8) Awareness of the necessity of lifelong learning; ability to access information to follow developments in civil engineering technology.
9) To act in accordance with ethical principles, professional and ethical responsibility; having awareness of the importance of employee workplace health and safety.
10) Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development.
11) Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of civil engineering solutions.