MCH4205 Introduction to Finite Element MethodsBahçeşehir UniversityDegree Programs MOLECULAR BIOLOGY AND GENETICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MOLECULAR BIOLOGY AND GENETICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MCH4205 Introduction to Finite Element Methods Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Assoc. Prof. ARMAĞAN FATİH KARAMANLI
Recommended Optional Program Components: None
Course Objectives: The objective of this course is to equip the student with theoretical finite element methods background as well as practical experience. Matrix algebra, truss and beam element formulations, 1D, 2D and 3D element formulations and their analysis procedures will be shown within the theoretical content of that course. Hypermesh, Radioss Linear and Nastran software packages will be introduced.

Learning Outcomes

The students who have succeeded in this course;
I. Define the CAE methodologies and Finite Element Methods.
II. Explain the commrecial software packages and their application areas.
III. Describe the FEM philosophy and alternative methodologies.
IV. Describe basic geometric functions and meshing operations in Hyperworks, geometry clean-up, mesh editing and element quality check tools.
V. Apply linear 1D element formulations in solving the problems of different disciplines.
VI. Analyse one dimensional and two dimensional problems with 1D elements.
VII. Analyse the plane and space truss systems with Finite Element Methods.
VIII. Analyse the 2D and 3D systems under static loading by using Hypermesh software and with Radioss Linear and Nastran solvers.
IX. Explain 1D, 2D and 3D elastosatics, local and global shape functions.
X. Analyse the 2D and 3D systems in frequency domain, modal and frequency response analysis in Hyperworks.

Course Content

Methods in Computer Aided Engineering; Matrix Algebra Review, Introduction to Hypermesh; FEM Philosophy, Seven Steps of FEM.; Basic Functions in Hypermesh; Linear 1D Element Formulations with Spring Analogy and Assembly Process in 1D.; Hyperworks: Basic Geometric Functions in Hypermesh; 1D Elastostatic and Heat Transfer Problems, Applying Boundary Conditions with Direct and Elimination Methods.; Hyperworks: 1D and 2D Meshing in Hypermesh, Element Types for Different Solvers; Analysis of One-Dimensional Problems.; Hyperworks: 3D Meshing in Hypermesh, Element Types for Different Solvers Assembly Process in 2D for 1D elements. Hyperworks: Geometry Clean Up and Model Checking, Element Quality, Free Edge, Duplicate and Element Normal Checks, Mesh Editing Plane and Space Trusses, Material.;Hyperworks: Property and Component Definitions, Card Types for Different Solvers, Beam elements.
Hyperworks: Midsurface Generations, 2D Static Analysis - Preporcess in Hypermesh for Radioss Linear Solver, and Post Process in Hyperview; 1D Elastostatics, ID and IEN arrays.
Hyperworks: 3D Static Analysis - Preporcess in Hypermesh for Radioss Linear Solver, and Post Process in Hyperview, 3D Static Analysis in Nastran; Local and Global Shape Function Construction for 1D Linear Elements. Hyperworks: Modeling Tricks and Techniques for Assemblies - Point Welds, Welds, Brazing, Bolts; Local and Global Shape Function Construction for 1D Quadratic Elements. Hyperworks: Static Analysis for Assembled Structures 2D Elastostatics. Hyperworks: Introduction to NVH, Modal Analysis with Radioss Linear and Nastran; 2D Elastostatics cont'd, Introduction to 3D Elastostatics. Hyperworks: Frequency Response Analysis with Radioss Linear and Nastran

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Methods in Computer Aided Engineering
2) Matrix Algebra Review, Introduction to Hypermesh
3) FEM Philosophy, Seven Steps of FEM. Hyperworks: Basic Functions in Hypermesh
4) Linear 1D Element Formulations with Spring Analogy and Assembly Process in 1D. Hyperworks: Basic Geometric Functions in Hypermesh
5) 1D Elastostatic and Heat Transfer Problems, Applying Boundary Conditions with Direct and Elimination Methods. Hyperworks: 1D and 2D Meshing in Hypermesh, Element Types for Different Solvers
6) Analysis of One-Dimensional Problems. Hyperworks: 3D Meshing in Hypermesh, Element Types for Different Solvers
7) Assembly Process in 2D for 1D elements. Hyperworks: Geometry Clean Up and Model Checking, Element Quality, Free Edge, Duplicate and Element Normal Checks, Mesh Editing
8) Plane and Space Trusses, Material. Hyperworks: Property and Component Definitions, Card Types for Different Solvers
9) Trusses cont'd, Beam elements. Hyperworks: Midsurface Generations, 2D Static Analysis -Preporcess in Hypermesh for Radioss Linear Solver, and Post Process in Hyperview
10) 1D Elastostatics, ID and IEN arrays. Hyperworks: 3D Static Analysis - Preporcess in Hypermesh for Radioss Linear Solver, and Post Process in Hyperview, 3D Static Analysis in Nastran
11) Local and Global Shape Function Construction for 1D Linear Elements. Hyperworks: Modeling Tricks and Techniques for Assemblies - Point Welds, Welds, Brazing, Bolts
12) Local and Global Shape Function Construction for 1D Quadratic Elements. Hyperworks: Static Analysis for Assembled Structures
13) 2D Elastostatics. Hyperworks: Introduction to NVH, Modal Analysis with Radioss Linear and Nastran
14) 2D Elastostatics cont'd, Introduction to 3D Elastostatics. Hyperworks: Frequency Response Analysis with Radioss Linear and Nastran

Sources

Course Notes / Textbooks: Lecture Notes
References: Saeed Moaveni, “Finite Element Analysis, Theory and Application with Ansys”, Pearson International Edition, 3rd Ed., ISBN-10: 0-13-241651-4, ISBN 13: 978-0-13-241651-1.

Robert D. Cook, David S. Malkus, Micheal E. Plesha, Robert J. Witt, “Concepts and Applications of Finite Element Analysis”, John Wiley & Sons, Inc., 4th Ed., ISBN 978-0-471-35605-9.

Klaus-Jurgen Bathe, “Finite Element Procedures”, Prentice Hall, ISBN 0-13-301458-4.

Zhangxin Chen, “Finite Element Methods and Their Applications”, Springer, ISBN 3-540-24078-0.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 0
Homework Assignments 5 % 10
Project 1 % 50
Total % 60
PERCENTAGE OF SEMESTER WORK % 10
PERCENTAGE OF FINAL WORK % 50
Total % 60

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 2 28
Laboratory 14 2 28
Study Hours Out of Class 14 4 56
Project 1 10 10
Homework Assignments 5 4 20
Total Workload 142

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Utilize the wealth of information stored in computer databases to answer basic biological questions and solve problems such as diagnosis and treatment of diseases. 3
2) Acquire an ability to compile and analyze biological information, clearly present and discuss the conclusions, the inferred knowledge and the arguments behind them both in oral and written format. 4
3) Develop critical, creative and analytical thinking skills. 5
4) Develop effective communication skills and have competence in scientific speaking, reading and writing abilities in English and Turkish. 3
5) Gain knowledge of different techniques and methods used in genetics and acquire the relevant laboratory skills. 4
6) Detect biological problems, learn to make hypothesis and solve the hypothesis by using variety of experimental and observational methods. 4
7) Gain knowledge of methods for collecting quantitative and qualitative data and obtain the related skills. 3
8) Conduct research through paying attention to ethics, human values and rights. Pay special attention to confidentiality of information while working with human subjects. 5
9) Obtain basic concepts used in theory and practices of molecular biology and genetics and establish associations between them. 4
10) Search and use literature to improve himself/herself and follow recent developments in science and technology. 5
11) Be aware of the national and international problems in the field and search for solutions. 4