CET3106 Operating SystemsBahçeşehir UniversityDegree Programs COMPUTER EDUCATION AND INSTRUCTIONAL TECHNOLOGIESGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
COMPUTER EDUCATION AND INSTRUCTIONAL TECHNOLOGIES
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
CET3106 Operating Systems Fall
Spring
3 0 3 4
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi YAVUZ SAMUR
Recommended Optional Program Components: None
Course Objectives: This course is a core course on one of the pillars of computer systems: Operating Systems (OS). The course will make the student appreciate things he takes for granted such as process management, file systems, and so on. It will also help him/her make an entry into the domains of efficient use of OSes and OS design.

Learning Outcomes

The students who have succeeded in this course;

The students who have succeeded in this course;
1. Be able to understand importance of Operating System as a resource management tool
2. Become familiar with the mechanics of processes and threads
3. Be able to understand memory management details of OS
4. Be able to understand file systems
5. Be able to use input and output
6. Be able to understand deadlocks, and avoiding deadlocks

Course Content

1.History of Operating Systems, Introduction to Operating Systems
2.Processes and Threads
3.Memory Management
4.File Systems
5.Input Output
6.Deadlocks

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Input Output (cont)
1) History of Operating Systems, Introduction to Operating Systems
2) Processes and Threads
3) Processes and Threads (cont.)
4) Memory Management
5) Memory Management (cont)
6) Memory Management (cont)
7) Midterm
8) File Systems
9) File Systems (cont)
10) Input Output
11) Input Output (cont)
12) Deadlocks
13) Deadlocks(cont)
14) Review

Sources

Course Notes / Textbooks: Operating System Concepts
Abraham Silberschatz (Author), Peter B. Galvin (Author), Greg Gagne (Author)
References: Andrew S. Tanenbaum, Modern Operating Systems, (3rd Edition), 2007, Prentice Hall

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 10
Quizzes 2 % 10
Midterms 1 % 30
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Quizzes 2 2 4
Midterms 1 25 25
Final 1 35 35
Total Workload 106

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) To define concepts related to the latest knowledge, tools and other scientific resources for the teaching profession, educational technology and information technologies in terms of national and international standards.
2) To explain the main elements of teaching strategies, methods and techniques, material design and assessment and evaluation processes that affect the development of educational technology integration.
3) To develop competencies related to software languages, operating systems, computer networks and computer hardware.
3) To use the most appropriate curriculum frameworks to plan lessons and activities based on active and student-centered learning integrated with technology.
4) To use the most appropriate curriculum frameworks to plan lessons and activities based on active and student-centered learning integrated with technology.
5) To plan, implement and evaluate classroom activities that utilize cutting-edge technologies to foster creativity, problem solving and critical thinking using scientific methods.
6) To build strong theoretical and applied models to develop solutions to problems that focus on systems and human development within a learning organization. 
7) To review, evaluate and recommend strategies for technology integration based on the interests, needs, individual differences and developmental characteristics of students in primary and secondary education.
8) To work individually and collaboratively in a team to carry out activities related to educational technology, information technology and the teaching profession in an interdisciplinary approach.
9) To effectively use and evaluate educational technologies and appropriately designed instructional models as a means of achieving and meeting learning objectives and requirements.
10) To utilize effective metacognitive techniques to make the classroom a community of learners engaged in lifelong learning activities.
11) To prepare trainings and projects related to educational technology for the community and to provide counseling to individuals in enhancing learning through the appropriate use of technology.
12) To implement cost and time sensitive strategies to support individuals and organizations to carry out their work more effectively.
13) To equip teachers to be pioneers and models in the application of technology for educational purposes using ethical and legal standards and to keep pace with changing technology.
14) To investigate efficient design solutions and existing standards used today for educational technologies, curricula, innovations and outcomes related to work, school, education sector and virtual world.
15) To gain fluency in interpersonal communication, teaching frameworks and the use of different technologies in relation to national norms and laws.