BME4010 Healthcare Facility Guidelines and StandardsBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME4010 Healthcare Facility Guidelines and Standards Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. ALİ YEKTA ÜLGEN
Course Objectives: To learn the design and certification requirements for Hospitals, Health Care Facility Management and Safety.

Learning Outcomes

The students who have succeeded in this course;
Guidelines and Minimum Requirements for Design and Construction of Hospital and Health Care Facilities

Course Content

Guidelines and Minimum Requirements for Design and Construction of Hospital and Health Care Facilities; Sterilization, Medical Gas Pipeline System, Earth Grounding, Clean air systems, Hazardous materials and Risk Control, Patient Safety.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Guidelines for Design of Health Care Facilities (AIA)
2) Hospital Accreditation and JCI Standards; QHA Trent Accreditation Standards
3) Design Requirements for ICU, OR, X-Ray Department, PET Shielding Requirements
4) "Medical Gas Pipeline System, Guidelines for Testing Medical Gases (O2, N20 and Medical Air), Medical-surgical vacuum systems, Design of the Vacuum Pump System, Waste Anesthetic Gas Disposal"
5) Clean-air Systems and Classification, Hospital clean-air zones, Airborne Infection, ISO 14644
6) Particle Counting, Active/Passive Air Sampling, Isolation Rooms Design Requirements
7) Midterm Exam I
8) Earth Grounding System, Isolated Power Systems and Line Isolation Monitor, Conductive Flooring
9) "Guidelines for Design of Sterilization Department, Sterilization Validation, Sterility and Shelf Life, Bowie-Dick test, Chemical indicators, Biological indicators"
10) Sterilization Techniques (EtO, Formaldehyde, Ozone, Plasma , Gamma) Compaing EtO and Plasma sterilization techniques
11) Sterilization Department Design Guidelines, Validation in Sterilization
12) Health Devices IPM System for Medical Device Performance and Safety Measurements
13) Waste Management, Management of Hazardous Materials
14) Midterm Exam II

Sources

Course Notes / Textbooks: Ders Notları; Power Point sunumlar.
References: Joint Commission International Accreditation Standards for Hospitals, 6th Edition, Sterilization, Part 1: Sterilization in Health Care Facilities, AAMI (Association for the Advancement of Medical Instrumentation ), 2015 Edition; EN ISO 14644 Standards; EN ISO 7396; Guidelines for the Design and Construction of Health Care Facilities, American Institute of Architects and the Facility Guidelines Institute, 2014; NFPA 99 Standard For Healthcare Facilities, 2015 edition; ECRI Health Devices IPM.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 3 % 20
Midterms 2 % 40
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 12 3 36
Study Hours Out of Class 14 5 70
Homework Assignments 4 7 28
Midterms 2 3 6
Final 1 2 2
Total Workload 142

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products.
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems.
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging.
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem.
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation.
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically.
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams.
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems.
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system.
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life.
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.