BME3008 Therapeutic Medical DevicesBahçeşehir UniversityDegree Programs MOLECULAR BIOLOGY AND GENETICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MOLECULAR BIOLOGY AND GENETICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BME3008 Therapeutic Medical Devices Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi BORA BÜYÜKSARAÇ
Course Objectives: • Give the principles of medical therapeutic devices and their functions and teach their specific requirements.
• Describe the functional differences between diagnostic and therapeutic devices.
• Define the design goals of therapeutic medical devices.

Learning Outcomes

The students who have succeeded in this course;
Learns the principles of medical therapeutic devices and their functions.
Knows the differences in function between diagnostic and therapeutic devices.
Gains knowledge on the design goals of therapeutic medical devices.

Course Content

Fundamentals of therapeutic devices and their working principles. Pacemakers, defibrillators, cardiac assist devices, hemodialysis, lithotripsy, ventilators, drug infusion pumps, electrosurgical unit.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to therapeutic medical devices
2) Pacemakers, cardiac anatomy, heart block
3) Asynchronous cardiac pacemaker
4) Timing circuit, output circuit, lead wires and electrodes
5) Synchronous pacemakers
6) Pacemaker timing cycles, single chamber timing, dual chamber timing
7) Pacemaker mediated tachycardia
8) Defibrillators, charging/discharging examples
9) Cardiac-assist devices, intra-aortic balloon pump
10) Hemodialysis
11) Lithotripsy
12) Ventilators
13) Drug infusion pumps
14) Electrosurgical unit

Sources

Course Notes / Textbooks: John G. Webster, Medical Instrumentation Application and Design, 4th Edition
Wiley, ISBN-13: 978-0471676003, ISBN-10: 0471676004
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 3 % 30
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 7 98
Quizzes 3 1 3
Midterms 1 2 2
Final 1 2 2
Total Workload 147

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Utilize the wealth of information stored in computer databases to answer basic biological questions and solve problems such as diagnosis and treatment of diseases. 3
2) Acquire an ability to compile and analyze biological information, clearly present and discuss the conclusions, the inferred knowledge and the arguments behind them both in oral and written format. 4
3) Develop critical, creative and analytical thinking skills. 5
4) Develop effective communication skills and have competence in scientific speaking, reading and writing abilities in English and Turkish. 3
5) Gain knowledge of different techniques and methods used in genetics and acquire the relevant laboratory skills. 4
6) Detect biological problems, learn to make hypothesis and solve the hypothesis by using variety of experimental and observational methods. 4
7) Gain knowledge of methods for collecting quantitative and qualitative data and obtain the related skills. 3
8) Conduct research through paying attention to ethics, human values and rights. Pay special attention to confidentiality of information while working with human subjects. 5
9) Obtain basic concepts used in theory and practices of molecular biology and genetics and establish associations between them. 4
10) Search and use literature to improve himself/herself and follow recent developments in science and technology. 5
11) Be aware of the national and international problems in the field and search for solutions. 4