MBG4061 ImmunologyBahçeşehir UniversityDegree Programs MOLECULAR BIOLOGY AND GENETICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MOLECULAR BIOLOGY AND GENETICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MBG4061 Immunology Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. Öğr. Üyesi ELIZABETH HEMOND
Course Objectives: To determine the functions of the immune system, to learn the immune system components and immune system types, to understand the molecular mechanism of immune deficiency and autoimmune diseases.

Learning Outcomes

The students who have succeeded in this course;
1. Can comprehend the essential roles of immune system according to the knowledge of immun system components they gain during the course.
2. Can discriminate the immune system types by comparing their components and their functions
3. Can schema the immun response effector mechanism by learning the crosstalk of cells and molecules
4. Can find association between immune response and the pathogenesis of immun deficiency and autoimmune disease.
5. Can comprehend the immunological methods working principles by using the knowledg in advanced molecular biological methods.
6. Can reach the information about adaptive and humaral immune deficiency syndromes accorindg to scientific papers, assimilate and discusss the knowledge

Course Content

To determine the functions of the immune system, to learn the immune system components and immune system types, to understand the molecular mechanism of the immune deficiency and autoimmune diseases

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction to Immunology
2) Cells and tissues of the immune system
3) Innate immunity
4) Antigen processing and presentation to T cell
5) Antigen detection by adaptive immunity
6) Cell mediated immune responses
7) Effector mechanism of cell mediated immunity
8) Humoral immunity
9) Effector mechanism of humeral immunity
10) Hypersensitivity and types
11) Innate and adaptive immunodeficiency
12) Immunological tolerance and autoimmunity
13) Immune response to tumors and transplantation and rejection
14) Cytokines, chemokine, their receptors and techniques in immunology

Sources

Course Notes / Textbooks: 1. Basic Immunology Updated Edition: Functions and Disorders of the Immune System AK. Abbas, AH. Lichtman, 3. Edition, Saunders, 2010.
-Kuby Immunology, TJ. Kindt, BA. Osborne, RA. Goldsby, 6th edition, W. H. Freeman & Company, 2006.
-Janeway's Immunobiology, KM. Murphy, P Travers, M Walport, 7 edition, Garland Science, 2007.
-Immunology: A Short Course, R. Coico, G Sunshine, 6. Edition, Wiley-Blackwell, 2009.
-Roitt's Essential Immunology, PJ Delves, SJ Martin, DR Burton, IM Roitt, 12 edition, Wiley-Blackwell, 2011."
References: 1. www.sciencedirect.com
2. www.ncb.nlm.nih.gov.tr

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 10 % 10
Presentation 2 % 40
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 7 98
Presentations / Seminar 2 4 8
Final 1 2 2
Total Workload 150

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Utilize the wealth of information stored in computer databases to answer basic biological questions and solve problems such as diagnosis and treatment of diseases. 5
2) Acquire an ability to compile and analyze biological information, clearly present and discuss the conclusions, the inferred knowledge and the arguments behind them both in oral and written format. 5
3) Develop critical, creative and analytical thinking skills. 5
4) Develop effective communication skills and have competence in scientific speaking, reading and writing abilities in English and Turkish. 5
5) Gain knowledge of different techniques and methods used in genetics and acquire the relevant laboratory skills. 2
6) Detect biological problems, learn to make hypothesis and solve the hypothesis by using variety of experimental and observational methods. 5
7) Gain knowledge of methods for collecting quantitative and qualitative data and obtain the related skills. 3
8) Conduct research through paying attention to ethics, human values and rights. Pay special attention to confidentiality of information while working with human subjects. 5
9) Obtain basic concepts used in theory and practices of molecular biology and genetics and establish associations between them. 3
10) Search and use literature to improve himself/herself and follow recent developments in science and technology. 4
11) Be aware of the national and international problems in the field and search for solutions. 3