CMP5102 Veri Madenciliği IIBahçeşehir ÜniversitesiAkademik Programlar BÜYÜK VERİ ANALİTİĞİ VE YÖNETİMİ (İNGİLİZCE, TEZSİZ)Öğrenciler için Genel BilgiDiploma EkiErasmus BeyanıUlusal YeterliliklerBologna Komisyonu
BÜYÜK VERİ ANALİTİĞİ VE YÖNETİMİ (İNGİLİZCE, TEZSİZ)
Yüksek Lisans TYYÇ: 7. Düzey QF-EHEA: 2. Düzey EQF-LLL: 7. Düzey

Ders Tanıtım Bilgileri

Ders Kodu Ders Adı Yarıyıl Teorik Pratik Kredi AKTS
CMP5102 Veri Madenciliği II Bahar 3 0 3 12
Bu katalog bilgi amaçlıdır, dersin açılma durumu, ilgili bölüm tarafından yarıyıl başında belirlenir.

Temel Bilgiler

Öğretim Dili: İngilizce
Dersin Türü: Departmental Elective
Dersin Seviyesi: LİSANSÜSTÜ
Dersin Veriliş Şekli: Yüz yüze
Dersin Koordinatörü: Dr. Öğr. Üyesi TEVFİK AYTEKİN
Dersi Veren(ler): Dr. Öğr. Üyesi TEVFİK AYTEKİN
Opsiyonel Program Bileşenleri: yok.
Dersin Amacı: Bu ders bazı ileri ve popüler veri madenciliği konularını uygulamalı olarak işler. Uygulamaları açık kaynak yazılım programı olan R üzerinde yapılacaktır. Bu programlama dilini kullanmak için temel bilgiler işlenecektir.

Öğrenme Kazanımları

Bu dersi başarıyla tamamlayabilen öğrenciler;
I. Veri madenciliğinde ileri konuları tanıtmak.
II. Veri madenciliğinde kullanılan ileri yöntemleri ve programlama araçlarını kullanmak ve değişik mühendislik alanlarına uygulama becerisi kazanma.
III. Veri ve ilişkileri keşfetmek yeteneği kazandırma.
IV. Veri içeren sorunlar için hipotez testi gerçekleştirmek için yeteneği kazandırma.

Dersin İçeriği

Giriş, Veri ithalat ve ihracat, Veri keşif, Karar ağaçları ve rasgele orman, Ağ tahmini, Aykırı algılama, Zaman ciddi analiz, Dernek kuralları, Metin madenciliği, sosyal ağ analizi, web madenciliği, Vaka çalışması I: Analiz ve ev fiyat endeksleri tahmini, Vaka çalışması II: sınırlı bellek ile Büyük Veri Akıllı modelleme

Haftalık Ayrıntılı Ders İçeriği

Hafta Konu Ön Hazırlık
1) Giriş
2) Veri çekme ve aktarma
3) Veri araştırma ve keşfi
4) Karar ağaçları ve rasgele orman
5) Ağ kestirimi
6) Aykırılık algılama
7) Zaman serisi analizi
8) İlişki kuralları
9) Yazı madenciliği
10) sosyal ağ analizi
11) web madenciliği
12) Vaka çalışması I: Analiz ve ev fiyat endeksleri tahmini
13) Case study II: Predictive modelling of Big Data with limited memory
14) Projeler

Kaynaklar

Ders Notları / Kitaplar: Yanchang Zhao ,R and Data Mining: Examples and Case Studies, Academic Press, Elsevier, 2012
Diğer Kaynaklar: none.

Değerlendirme Sistemi

Yarıyıl İçi Çalışmaları Aktivite Sayısı Katkı Payı
Projeler 1 % 30
Ara Sınavlar 1 % 30
Final 1 % 40
Toplam % 100
YARIYIL İÇİ ÇALIŞMALARININ BAŞARI NOTU KATKISI % 30
YARIYIL SONU ÇALIŞMALARININ BAŞARI NOTUNA KATKISI % 70
Toplam % 100

AKTS / İş Yükü Tablosu

Aktiviteler Aktivite Sayısı İş Yükü
Ders Saati 14 42
Sınıf Dışı Ders Çalışması 14 42
Proje 1 30
Ara Sınavlar 1 30
Final 1 50
Toplam İş Yükü 194

Program ve Öğrenme Kazanımları İlişkisi

Etkisi Yok 1 En Düşük 2 Düşük 3 Orta 4 Yüksek 5 En Yüksek
           
Dersin Program Kazanımlarına Etkisi Katkı Payı