LOG4436 Inventory and Warehouse ManagementBahçeşehir UniversityDegree Programs MOLECULAR BIOLOGY AND GENETICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MOLECULAR BIOLOGY AND GENETICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
LOG4436 Inventory and Warehouse Management Fall 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. YAVUZ GÜNALAY
Recommended Optional Program Components: None
Course Objectives: Students learn to analytically solve problems and make decision considering forecasting, inventory planning and service levels, profitability, product range, supply chain dynamics, facility location, distribution, and routing.

Learning Outcomes

The students who have succeeded in this course;
The course provides an integrated methodology for strategy based inventory and product management in supply chains.

Course Content

Course introduction, Measures in logistics, ABCD analysis, Activity based costing, Du Pont -model, Turnover, Modeling in logistics, Trend adjustment: Holt’s method, Trend and seasonal variation adjustment: Winter’s model, optimizing the parameters for the above methods, Stochastic demand, Safety stocks, Single products with time-variable demand, dynamic programming, Wagner-Whitin method, Silver-Meal heuristics, Time supply, Lot- forlot, Least unit cost, Part-period balancing, Heuristics, Yield Management – stochastic demand, Bullwhip effect, Deterministic demand, Probabilistic demand, Arborescent system, Supply chain contracts, Distribution requirements planning, Multioperiod production planning, Repair crew planning.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Course introduction, Measures in logistics, ABCD analysis
2) Activity based costing
3) Du-Pont Model, Turnover, Modeling in Logistics
4) Trend adjustment: Holt’s method, Trend and seasonal variation adjustment: Winter’s model, optimizing the parameters for the above methods
5) Stochastic demand, Safety stocks, Single products with time-variable demand, dynamic programming
6) Wagner-Whitin method, Silver-Meal heuristics, Time supply, Lot- forlot, Least unit cost, Part-period balancing, Heuristics
7) Yield Management – stochastic demand
8) Midterms Week
9) Bullwhip effect, Deterministic demand, Probabilistic demand, Arborescent system, Supply chain contracts, Distribution requirements planning
10) Multioperiod production planning, Repair crew planning
11) Case Capacent - preparation
12) Case Capacent feedback session
13) Course Wrapup; Case Sport Obermeyer feedback session
14) Finals Week

Sources

Course Notes / Textbooks: Silver, Edward A. (1998) Inventory management and production planning and scheduling. ISBN 0-471-11947-4.

References: Ders Notları - Lecture material and course reading package.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 5 % 30
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 3 42
Homework Assignments 5 12 60
Midterms 1 2 2
Final 1 2 2
Total Workload 148

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Utilize the wealth of information stored in computer databases to answer basic biological questions and solve problems such as diagnosis and treatment of diseases. 3
2) Acquire an ability to compile and analyze biological information, clearly present and discuss the conclusions, the inferred knowledge and the arguments behind them both in oral and written format. 4
3) Develop critical, creative and analytical thinking skills. 5
4) Develop effective communication skills and have competence in scientific speaking, reading and writing abilities in English and Turkish. 3
5) Gain knowledge of different techniques and methods used in genetics and acquire the relevant laboratory skills. 4
6) Detect biological problems, learn to make hypothesis and solve the hypothesis by using variety of experimental and observational methods. 4
7) Gain knowledge of methods for collecting quantitative and qualitative data and obtain the related skills. 3
8) Conduct research through paying attention to ethics, human values and rights. Pay special attention to confidentiality of information while working with human subjects. 5
9) Obtain basic concepts used in theory and practices of molecular biology and genetics and establish associations between them. 4
10) Search and use literature to improve himself/herself and follow recent developments in science and technology. 5
11) Be aware of the national and international problems in the field and search for solutions. 4