ISM5206 Decision AnalysisBahçeşehir UniversityDegree Programs MOLECULAR BIOLOGY AND GENETICSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
MOLECULAR BIOLOGY AND GENETICS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
ISM5206 Decision Analysis Fall 3 0 3 12
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: Turkish
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Instructor ÖZLEM KANGA
Course Lecturer(s): Assoc. Prof. SEROL BULKAN
Recommended Optional Program Components: N.A.
Course Objectives: The aim of the course is to introduce the graphical models used in decision analysis and to provide a set of systematic tools to help the decision maker in giving a decision.

Learning Outcomes

The students who have succeeded in this course;
- Recognize the graphical models used in decision analysis.
- Model a given uncertain situation with Bayes networks.
- Compute exact and approximate inferences in Bayes networks.
- Model a given uncertain decision problem with influence diagrams.
- Make inferences in decision networks.
- Compute value of information.

Course Content

Expected Utility, Causal and Bayesian networks, Exact inference in Bayesian networks, Approximate inference in Bayesian networks, Learning Bayesian networks, Influence and decision networks, Value of information

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Probability review
2) Expected Utility
3) Causal and Bayesian networks
4) Building Bayesian models
5) Exact inference in Bayesian networks
6) Exact inference in Bayesian networks
7) Approximate inference in Bayesian networks
8) Approximate inference in Bayesian networks
9) Midterm exam
10) Learning Bayesian networks
11) Influence and decision networks
12) Influence and decision networks
13) Value of information
14) Project presentations

Sources

Course Notes / Textbooks: F.V. Jensen, 2001. Bayesian networks and decision graphs, New York : Springer
References: Robert T. Clemen, 1996. Making Hard Decisions: An Introduction to Decision Analysis, 2nd edition, Duxbury Press

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 4 % 10
Project 1 % 20
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 2 28
Presentations / Seminar 1 10 10
Project 1 40 40
Homework Assignments 4 10 40
Midterms 1 15 15
Final 1 20 20
Total Workload 195

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Utilize the wealth of information stored in computer databases to answer basic biological questions and solve problems such as diagnosis and treatment of diseases. 3
2) Acquire an ability to compile and analyze biological information, clearly present and discuss the conclusions, the inferred knowledge and the arguments behind them both in oral and written format. 4
3) Develop critical, creative and analytical thinking skills. 5
4) Develop effective communication skills and have competence in scientific speaking, reading and writing abilities in English and Turkish. 3
5) Gain knowledge of different techniques and methods used in genetics and acquire the relevant laboratory skills. 4
6) Detect biological problems, learn to make hypothesis and solve the hypothesis by using variety of experimental and observational methods. 4
7) Gain knowledge of methods for collecting quantitative and qualitative data and obtain the related skills. 3
8) Conduct research through paying attention to ethics, human values and rights. Pay special attention to confidentiality of information while working with human subjects. 5
9) Obtain basic concepts used in theory and practices of molecular biology and genetics and establish associations between them. 4
10) Search and use literature to improve himself/herself and follow recent developments in science and technology. 5
11) Be aware of the national and international problems in the field and search for solutions. 4