BNG5030 Signals and Dynamic SystemsBahçeşehir UniversityDegree Programs PERFORMING ARTSGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
PERFORMING ARTS
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
BNG5030 Signals and Dynamic Systems Spring
Fall
3 0 3 12
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Prof. Dr. GÜLAY BULUT
Recommended Optional Program Components: None
Course Objectives: To build upon the essential concepts related to signals and dynamical systems by providing the underlying mathematical theory.

Learning Outcomes

The students who have succeeded in this course;
Upon completion of the course, students will
1. have a through understanding of representation of signals in in time and frequency domains and their relations,
2. be able to obtain various mathematical models of dynamical systems from each other,
3. be able to apply mathematical tools to obtain response of dynamical systems to various inputs.

Course Content

Analysis of discrete-time and continuous-time signals through Fourier, Laplace and z-transforms. Mathematical modeling of discrete-time and continuous-time dynamical systems in time and frequency domains. Interconnections of dynamical systems.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Representation of continuous-time and discrete-time signals.
2) Fourier analysis of continuous-time signals
3) Fourier analysis of discrete-time signals
4) The Laplace transform
5) The z-transform
6) Time-domain modeling of continuous-time systems by differential equations.
7) Frequency-domain modeling of continuous-time systems by Fourier and Laplace transforms.
8) Response of continuous-time systems to specific inputs.
9) Time-domain modeling of discrete-time systems by difference equations.
10) Frequency-domain modeling of discrete-time systems by Fourier and z transforms.
11) Response of discrete-time systems to specific inputs.
12) Sampled-data systems.
13) Interconnection of systems.
14) Feedback systems.
15) Review

Sources

Course Notes / Textbooks:
References: 1. M. C. K. Khoo: Physiological Control System, Wiley, 1999.
2. R.M. Rangayyan: Biomedical Signal Analysis: A Case-Study Approach, 2001.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Application 3 % 15
Homework Assignments 5 % 15
Midterms 1 % 30
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 3 14 42
Study Hours Out of Class 15 7 105
Homework Assignments 5 6 30
Midterms 1 10 10
Final 1 15 15
Total Workload 202

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) They acquire theoretical, historical and aesthetic knowledge specific to their field by using methods and techniques related to performing arts (acting, dance, music, etc.). 2
2) They have knowledge about art culture and aesthetics and they provide the unity of theory and practice in their field. 2
3) They are aware of national and international values in performing arts. 2
4) Abstract and concrete concepts of performing arts; can transform it into creative thinking, innovative and original works. 1
5) They have the sensitivity to run a business successfully in their field. 3
6) Develops the ability to perceive, think, design and implement multidimensional from local to universal. 3
7) They have knowledge about the disciplines that the performing arts field is related to and can evaluate the interaction of the sub-disciplines within their field. 2
8) They develop the ability to perceive, design, and apply multidimensionality by having knowledge about artistic criticism methods. 3
9) They can share original works related to their field with the society and evaluate their results and question their own work by using critical methods. 1
10) They follow English language resources related to their field and can communicate with foreign colleagues in their field. 1
11) By becoming aware of national and international values in the field of performing arts, they can transform abstract and concrete concepts into creative thinking, innovative and original works. 3
12) They can produce original works within the framework of an interdisciplinary understanding of art. 2
13) Within the framework of the Performing Arts Program and the units within it, they become individuals who are equipped to take part in the universal platform in their field. 3
14) Within the Performing Arts Program, according to the field of study; have competent technical knowledge in the field of acting and musical theater. 2
15) They use information and communication technologies together with computer software that is at least at the Advanced Level of the European Computer Use License as required by the field. 3