TEXTILE AND FASHION DESIGN | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code | Course Name | Semester | Theoretical | Practical | Credit | ECTS |
MAT4053 | Differentiable Manifolds | Spring | 3 | 0 | 3 | 6 |
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester. |
Language of instruction: | English |
Type of course: | Non-Departmental Elective |
Course Level: | Bachelor’s Degree (First Cycle) |
Mode of Delivery: | Face to face |
Course Coordinator : | |
Recommended Optional Program Components: | None |
Course Objectives: | The differentiable manifolds course aims to give the fundamental knowledge for the studies of graduate students who intends to study at geometry. |
The students who have succeeded in this course; upon succeeding this course 1)be able to test a differentiable structure given on a set 2)be able to give examples of Differentiable structures on a set 3) be able to check differentiablity of a function 4) be able to solve problems involving the derived map of a transformation between two manifolds 5) be able to use the properties of induced topology on a manifold, 6) be able to coordinatize Grassmann manifolds and can evaluate their dimensions, 7) be able to understand the existence problems by using the unity of partition 8)be able to explain the derived function of a function by using the Leibniz rule, 9) be able to explain submanifolds as images under Immersions 10) be able to coordinatize quotient manifolds and calculate their dimensions, 11) be able to construct Klein bottle and Mobius strip as an example of a quotient manifold |
Differentiable (diff.able) functions, Atlas, diff.able structures on a set, Examples of diff.able structures, diff.able manifolds, diff.able functions, The induced topology on a manifold, diff.able varieties, Grassmann manifolds, Manifold structure on a topological space, properties of the induced topology, Topological restrictions on a manifold, Partitions of unity, Partial differentiation, tangent vectors, The invers function Theorem, Leibniz's rule. İmmersions, submanifolds, regular submanifolds, some topological properties of submanifolds. Submersions, The fibres of submersions, Quotient manifolds, Transformation groups, Examples of quotient manifolds. |
Week | Subject | Related Preparation |
1) | Preliminaires | |
2) | Some classical theory of differentiable functions | |
3) | Atlas, differentiable structures on a set | |
4) | Examples of differentiable structures on a set | |
5) | Differentiable manifolds | |
6) | Differentiable functions | |
7) | The induced topology on a manifold | |
8) | Differentiable varieties, Grassmann manifolds | |
9) | Topological restrictions on a manifold, Partitions of unity | |
10) | Manifold structure on a topological space, properties of the induced topology | |
11) | Partial differentiation, tangent vectors, derived linear functions, The invers function Theorem, Leibniz's rule. | |
12) | İmmersions, submanifolds, regular submanifolds, some topological properties of submanifolds. | |
13) | Submersions, The fibres of submersions, Quotient manifolds | |
14) | Transformation groups, Examples of quotient manifolds. |
Course Notes / Textbooks: | Differentiable Manifolds an Introduction ,F Brickell, R. S. Clark. |
References: | . |
Semester Requirements | Number of Activities | Level of Contribution |
Midterms | 2 | % 45 |
Final | 1 | % 55 |
Total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 45 | |
PERCENTAGE OF FINAL WORK | % 55 | |
Total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Course Hours | 14 | 3 | 42 |
Study Hours Out of Class | 7 | 2 | 14 |
Midterms | 2 | 20 | 40 |
Final | 1 | 30 | 30 |
Total Workload | 126 |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Understands the principles of artistic creation and basic design and applies the art and design objects he creates within this framework. | |
2) | Conducts the multifaceted research required for textile and fashion design processes and analyzes and interprets the results. | |
3) | Creates original and applicable fabric, clothing and pattern designs by using elements from different historical periods and cultures in accordance with his purpose. | |
4) | Recognizes textile raw materials and equipments. | |
5) | Uses computer programs effectively in the garment and fabric surface design process. | |
6) | Has professional technical knowledge regarding the implementation of clothing designs and production; In this context, recognizes and uses technological tools and equipment. | |
7) | Understands the importance of interdisciplinary interaction and communication in textile and clothing design-production-presentation processes and reflects this on the processes. | |
8) | Works in a programmed and disciplined manner in professional practices. | |
9) | Realizes the necessity of lifelong learning to maintain his productivity, creativity and professional competence. | |
10) | Understands, adopts and applies ethical responsibilities in professional practices; Has knowledge of relevant legal regulations. | |
11) | Establishes effective visual, written and verbal communication in the field of textile and fashion design. | |
12) | Reflects his knowledge on current and contemporary issues from all fields to his professional theoretical and practical studies on textile and clothing design; Understands the social and universal effects of these issues. | |
13) | Has sufficient awareness about social justice, environmental awareness, quality culture and protection of cultural values. |