MAT4052 Commutative AlgebraBahçeşehir UniversityDegree Programs TEXTILE AND FASHION DESIGNGeneral Information For StudentsDiploma SupplementErasmus Policy StatementBologna CommissionNational Qualifications
TEXTILE AND FASHION DESIGN
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
MAT4052 Commutative Algebra Spring 3 0 3 6
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: Non-Departmental Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator :
Recommended Optional Program Components: None
Course Objectives: To provide the necessary background (both computational and theoretical) in commutative algebra to mathematics majors.

Learning Outcomes

The students who have succeeded in this course;
A student who finishes this course successfully will have learned basic concepts of commutative algebra.

Course Content

Abelian groups, rings and fields. Vector spaces and linear transformations. Bases and matrix representations of linear transformations. Polynomial rings. Ideals, prime and maximal ideals. Quotients of polynomial rings. Modules over polynomial rings. Prime and primary ideals. Factorization of ideals in the monoid of ideals. Localizations of ideals. Zero-divisors, integral domains and rings of fractions. Unique factorization domains and Euclidean domains. Radical of an ideal. Nilradical and Jacobson radical of a ring. Operations in the lattice of ideals. Classical Euclidean division algorithm in polynomial algebras. Monomial orderings and division algorithms. Fundamental Theorem of Algebra. Finite generation of ideals in polynomial algebras. Gröbner basis and Buchberger algorithm. Examples and calculations.
Gröbner bazları ve Buchberger algoritması. Örnekler ve hesaplamalar. Gröbner basis and Buchberger algorithm. Examples and calculations. Morphisms between modules. Kernels and images of morphisms. Submodules and quotient modules. Ideals of annihilators. Internal and external sums of modules. Tensor products of modules. Submodule and ideal chains. Artinian and Noetherian rings and modules.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Abelian groups, rings and fields.
2) Vector spaces and linear transformations. Bases and matrix representations of linear transformations.
3) Polynomial rings. Ideals, prime and maximal ideals. Quotients of polynomial rings. Modules over polynomial rings.
4) Prime and primary ideals. Factorization of ideals in the monoid of ideals. Localizations of ideals.
5) Zero-divisors, integral domains and rings of fractions. Unique factorization domains and Eucledian domains.
6) Radical of an ideal. Nilradical and Jacobson radical of a ring. Operations in the lattice of ideals.
7) A review of covered subjects and the first exam.
8) Classical Euclidean division algorithm in polynomial algebras. Monomial orderings and division algorithms.
9) Fundamental Theorem of Algebra. Finite generation of ideals in polynomial algebras.
10) Gröbner basis and Buchberger algorithm. Examples and calculations.
11) Gröbner basis and Buchberger algorithm. Examples and calculations.
12) A review of covered subjects and the second exam.
13) Morphisms between modules. Kernels and images of morphisms. Submodules and quotient modules. Ideals of annihilators. Examples.
14) Internal and external sums of modules. Tensor products of modules. Submodule and ideal chains. Artinian and Noetherian rings and modules.

Sources

Course Notes / Textbooks: Instructor's own lecture notes.
Atiyah and MacDonald, "Introduction to Commutative Algebra"
References:

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Quizzes 3 % 10
Midterms 2 % 40
Final 1 % 50
Total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 2 28
Quizzes 3 3 9
Midterms 2 10 20
Final 1 26 26
Total Workload 125

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Understands the principles of artistic creation and basic design and applies the art and design objects he creates within this framework.
2) Conducts the multifaceted research required for textile and fashion design processes and analyzes and interprets the results.
3) Creates original and applicable fabric, clothing and pattern designs by using elements from different historical periods and cultures in accordance with his purpose.
4) Recognizes textile raw materials and equipments.
5) Uses computer programs effectively in the garment and fabric surface design process.
6) Has professional technical knowledge regarding the implementation of clothing designs and production; In this context, recognizes and uses technological tools and equipment.
7) Understands the importance of interdisciplinary interaction and communication in textile and clothing design-production-presentation processes and reflects this on the processes.
8) Works in a programmed and disciplined manner in professional practices.
9) Realizes the necessity of lifelong learning to maintain his productivity, creativity and professional competence.
10) Understands, adopts and applies ethical responsibilities in professional practices; Has knowledge of relevant legal regulations.
11) Establishes effective visual, written and verbal communication in the field of textile and fashion design.
12) Reflects his knowledge on current and contemporary issues from all fields to his professional theoretical and practical studies on textile and clothing design; Understands the social and universal effects of these issues.
13) Has sufficient awareness about social justice, environmental awareness, quality culture and protection of cultural values.