GEP0824 Modern LogicBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
GEP0824 Modern Logic Fall 3 0 3 5
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: GE-Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. BURCU ALARSLAN ULUDAŞ
Recommended Optional Program Components: None
Course Objectives: To make students to be acquainted with the subject-matters and concepts of modern logic and to learn the way of thinking about those subject-matters and concepts.

Learning Outcomes

The students who have succeeded in this course;
After successfully completing this course the student will be able
•Recognises problems of modern logic.
•Identifies the relation of modern logic and other disciplines.
•Tells the difference between modern and classic logic. •Correlates between logic and mathematics.
•Tells proposition and reasoning by symbols.

Course Content

Modern logic, Logic of truth function, Method of formal inference, Quantification logic, Philosophy of logic.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction
2) Introduction to modern logic Course notes
3) Logic of truth function Course notes
4) Logic of truth function Course notes
5) Logic of truth function Course notes
6) Method of formal inference Course notes
7) Method of formal inference Course notes
8) Quantification logic Course notes
9) Quantification logic Course notes
10) Axiomatic method Course notes
11) Axiomatic method Course notes
12) Problems about logic Course notes
13) Philosophy, science, logic Course notes
14) Philosophy of logic Course notes


Course Notes / Textbooks:
References: Doğan Özlem, Mantık, İstanbul 1996
Cemal Yıldırım, Mantık ‘Doğru Düşünme Yöntemi’ Bilgi yayınevi
Teo Grunberg, Sembolik Mantık, El Kitabı, ODTÜ Geliştirme Vakfı Yayıncılık

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 10
Homework Assignments 2 % 20
Midterms 1 % 20
Final 1 % 50
Total % 100
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Homework Assignments 2 10 20
Midterms 1 15 15
Final 1 20 20
Total Workload 97

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products.
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems.
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging.
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem.
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation.
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically.
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams.
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems.
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system.
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life.
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.