GEP0502 Great Discoveries and Inventions in the History of ScienceBahçeşehir UniversityDegree Programs SOFTWARE ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
SOFTWARE ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
GEP0502 Great Discoveries and Inventions in the History of Science Fall 3 0 3 4
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: English
Type of course: GE-Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: Face to face
Course Coordinator : Dr. BURCU ALARSLAN ULUDAŞ
Course Lecturer(s): Dr. Öğr. Üyesi DERYA TARBUCK
Recommended Optional Program Components: None
Course Objectives: The aim of this course is to survey the development of science and technology in a historical context.

Learning Outcomes

The students who have succeeded in this course;
Explains the method regarding the production of scientific knowledge and history of science.
Exemplifies important scientific discoveries throughout history.
Executes historical method to identify the contribution of civilizations to science.
Attributes the ideas of historians regarding the Scientific Revolution.
Critiques the applicability of scientific discoveries to technology using historical method.
Explains the reasons why Industrial revolution came into being.

Course Content

This course will begin with earliest scientific ideas and technological developments and will proceed to medieval, early modern and modern era.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction: Guiding Themes Coursebook
2) Tools and Toolmakers coursebook
3) Pharoes and Engineers coursebook
4) Greek Science coursebook
5) Alexandria and Science in the East coursebook
6) Science in China and India coursebook
7) Science in the New World coursebook
8) Science in the New World II coursebook
9) Copernicus and Galileo coursebook
10) Isaac Newton coursebook
11) Industrial Revolution coursebook
12) Legacy of the Revolution coursebook
13) New Aristotelians coursebook
14) The Bomb and the Genome coursebook

Sources

Course Notes / Textbooks: James E. McLellan ve Harold Dorn, Science and technology in world history: an introduction (The Johns Hopkins University Press, 2006)
References: Seçme Okuma Parçaları

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 20
Midterms 2 % 40
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Midterms 2 15 30
Final 1 20 20
Total Workload 92

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Be able to specify functional and non-functional attributes of software projects, processes and products.
2) Be able to design software architecture, components, interfaces and subcomponents of a system for complex engineering problems.
3) Be able to develop a complex software system with in terms of code development, verification, testing and debugging.
4) Be able to verify software by testing its program behavior through expected results for a complex engineering problem.
5) Be able to maintain a complex software system due to working environment changes, new user demands and software errors that occur during operation.
6) Be able to monitor and control changes in the complex software system, to integrate the software with other systems, and to plan and manage new releases systematically.
7) Be able to identify, evaluate, measure, manage and apply complex software system life cycle processes in software development by working within and interdisciplinary teams.
8) Be able to use various tools and methods to collect software requirements, design, develop, test and maintain software under realistic constraints and conditions in complex engineering problems.
9) Be able to define basic quality metrics, apply software life cycle processes, measure software quality, identify quality model characteristics, apply standards and be able to use them to analyze, design, develop, verify and test complex software system.
10) Be able to gain technical information about other disciplines such as sustainable development that have common boundaries with software engineering such as mathematics, science, computer engineering, industrial engineering, systems engineering, economics, management and be able to create innovative ideas in entrepreneurship activities.
11) Be able to grasp software engineering culture and concept of ethics and have the basic information of applying them in the software engineering and learn and successfully apply necessary technical skills through professional life.
12) Be able to write active reports using foreign languages and Turkish, understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
13) Be able to have knowledge about the effects of engineering applications on health, environment and security in universal and societal dimensions and the problems of engineering in the era and the legal consequences of engineering solutions.