GEP0201 City and CultureBahçeşehir UniversityDegree Programs COMPUTER ENGINEERINGGeneral Information For StudentsDiploma SupplementErasmus Policy StatementNational QualificationsBologna Commission
COMPUTER ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Course Introduction and Application Information

Course Code Course Name Semester Theoretical Practical Credit ECTS
GEP0201 City and Culture Spring 3 0 3 4
This catalog is for information purposes. Course status is determined by the relevant department at the beginning of semester.

Basic information

Language of instruction: Turkish
Type of course: GE-Elective
Course Level: Bachelor’s Degree (First Cycle)
Mode of Delivery: E-Learning
Course Coordinator : Dr. Öğr. Üyesi NESLİHAN AYDIN YÖNET
Course Lecturer(s): Dr. Öğr. Üyesi NESLİHAN AYDIN YÖNET
Recommended Optional Program Components: None
Course Objectives: The aim of the City and Culture course is to teach students to read, understand and analyze the city in its various dimensions. Within the scope of the course, first of all, the concepts of city and culture and the relationship between them will be explained.

Learning Outcomes

The students who have succeeded in this course;
1. They will have a general knowledge of urban culture,
2. They will have information about the evolution of cities,
3. Will be able to compare the effects of different social and cultural groups in cities on urban space,
4. Will be able to discuss today's cities with many dimensions (social, political, historical, architectural, etc.).

Course Content

The historical background of the relationship between city and culture, the effect of globalization on the transformation and change of today's cities, the effort to create a brand city, the protection of cultural values, the concept of sustainability, the importance of public spaces (squares and streets), the spatial and social reflections of housing culture on cities will be evaluated. At the end of the semester, the student will be able to evaluate the relationship between city and culture in many aspects.

Weekly Detailed Course Contents

Week Subject Related Preparation
1) Introduction: Explanation of the syllabus, giving information about the process. Selection of the study topics
2) City Concept / Urban Culture The list of the study topics
3) Transformation of Cities
4) Post-Industrial City
5) Global City
6) Public Space
7) Public Space -Midterm
8) Pandemic and City
9) Sustainability
10) Housing Culture
11) Student Presentations
12) Student Presentations
13) Student Presentations All student presentations must be uploaded to the related folder in "itslearning"
14) Evaluation of the Semester

Sources

Course Notes / Textbooks: -
References: • Thorns, David C. (2004), "Kentlerin Dönüşümü: Kent Teorisi ve Kentsel Yaşam", Soyak Yayınları, İstanbul, Türkiye.
• Atanur, G. ve Yaman, M. (Editörler) (Eylül 2016), "Kent Kültürü ve Kentlilik Bilinci Sempozyumu" Bildiri Kitabı, Bursa Kent Konseyi Bilimsel Yayınlar Dizisi-3, Bursa, Türkiye.
• Turgut Yıldız, H. ve Eyüce, A. (Derleyenler) (Aralık 2007), "Kent, Kültür ve Konut", IAPS-CSBE Network Kitap Serisi:7, Bahçeşehir Üniversitesi, Uğur Eğitim Pazarlama ve Yayıncılık A.Ş., İstanbul, Türkiye.
• Keyder, Ç. (Editör) (2006), "İstanbul: Küresel ile Yerel Arasında"Metis Yayınları, İstanbul, Türkiye.
• Bali, R. N. (2009), "Tarz-ı Hayat’tan Life Style’a: Yeni Seçkinler, Yeni Mekanlar, Yeni Yaşamlar", İletişim Yayınları, İstanbul, Türkiye.

Evaluation System

Semester Requirements Number of Activities Level of Contribution
Attendance 14 % 10
Presentation 1 % 30
Midterms 1 % 20
Final 1 % 40
Total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
Total % 100

ECTS / Workload Table

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 12 2 24
Presentations / Seminar 1 30 30
Midterms 1 4 4
Final 1 2 2
Total Workload 102

Contribution of Learning Outcomes to Programme Outcomes

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in mathematics, science and computer engineering; the ability to use theoretical and practical knowledge in these areas in complex engineering problems.
2) Ability to identify, formulate, and solve complex engineering problems; ability to select and apply appropriate analysis and modeling methods for this purpose.
3) Ability to design a complex system, process, device or product to meet specific requirements under realistic constraints and conditions; ability to apply modern design methods for this purpose.
4) Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in computer engineering applications; ability to use information technologies effectively.
5) Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or computer engineering research topics.
6) Ability to work effectively within and multi-disciplinary teams; individual study skills.
7) Ability to communicate effectively in verbal and written Turkish; knowledge of at least one foreign language; ability to write active reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. 3
8) Awareness of the necessity of lifelong learning; ability to access information, to follow developments in science and technology and to renew continuously. 3
9) To act in accordance with ethical principles, professional and ethical responsibility; information on the standards used in engineering applications.
10) Information on business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; information about sustainable development.
11) Knowledge of the effects of engineering practices on health, environment and safety in the universal and social scale and the problems of the era reflected in engineering; awareness of the legal consequences of engineering solutions.